In [73]:
import numpy as np
import matplotlib.pyplot as plt
Sine:
Cosine:
Tangent:
Area of triangle:
Radians:
Arc Length:
Area of Sector:
arcsin, arcos and arctan are the inverse (from length to angle in circle)
Domains and ranges:
sin:
cos:
tan:
In [74]:
fig, ax = plt.subplots(1, 3, figsize=(13,4))
x = np.linspace(0, 2*np.pi, 30*np.pi).astype(np.float32)
ax[0].plot(x, np.sin(x), label='sin')
ax[1].plot(x, np.cos(x), label='cos')
ax[2].plot(x, np.tan(x), label='tan')
ax[0].plot(x, np.arcsin(np.sin(x)), label='arcsin')
ax[1].plot(x, np.arccos(np.cos(x)), label='arccos')
ax[2].plot(x, np.arctan(np.tan(x)), label='arctan')
for axes in ax:
axes.grid(True)
axes.legend()
plt.show()
Secant:
Cosecant:
Cotangent:
In [75]:
fig, ax = plt.subplots(1, 3, figsize=(13,4))
x = np.linspace(0, 2*np.pi, 20*np.pi)
ax[0].plot(x, 1/np.cos(x), label='$sec$')
ax[1].plot(x, 1/np.sin(x), label='cosec')
ax[2].plot(x, np.cos(x)/np.sin(x), label='cot')
for axes in ax:
axes.grid(True)
axes.set_ylim([-20,20])
axes.legend()
plt.show()
$\tan\theta = \frac{\sin\theta}{\cos\theta}$
$\sin^2\theta + \cos^2\theta = 1$
$\sec^2\theta = 1 + \tan^2\theta$
$\mathrm{cosec} \theta = 1 + \cot^2\theta$
Sin:
Cos:
$\cos(2A) = \cos^2A - 2\sin^2B$
$= 2\cos^2x - 1$
$= 1 - 2\sin^2x$
Tan:
useful to reformat:
$a\cos \theta + b\sin \theta = r\cos(\theta+a)$
$r\cos(\theta + a) = r \cos a \cos \theta - r \sin a \sin \theta$
so:
$r \cos a \cos \theta = a\cos \theta$
$\therefore$ $r \cos a = a$
$- r \sin a \sin \theta = b\sin \theta$
$\therefore$ $r \sin a = -b$
Then solve as simultaneous equations:
solving a:
$\frac{\sin a}{\cos a} = \frac{-b}{a}$
$a \tan a = -b$
solving r:
$r^2\cos^2a + r^2\sin^2a = a^2+b^2$
$r^2 = a^2+b^2$