These have historically been fixed at 10.3 and 10.6 mag, respectively. In the era of changing CCD temperatures this no longer makes sense.
This notebook proposes an acquisition probability of 75% and 50% to define the yellow and red magnitude limits, respectively. It provides a plot that shows the limit magnitudes as a function of ACA CCD temperature.
In [1]:
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
import sys
sys.path.insert(0, '/home/aldcroft/git/starcheck')
from starcheck import star_probs
In [3]:
star_probs.acq_success_prob('2010:001', t_ccd=-19.7, mag=10.6)
Out[3]:
In [4]:
star_probs.acq_success_prob('2010:001', t_ccd=-19.7, mag=10.3)
Out[4]:
In [5]:
def plot_mag_limit_vs_t_ccd(p_acq, color, date):
t_ccds = np.arange(-19.7, -13, p_acq)
mags = []
for t_ccd in t_ccds:
mags.append(star_probs.mag_for_p_acq(p_acq, t_ccd=t_ccd, date=date))
plt.plot(t_ccds, mags, label='p_acq={}'.format(p_acq), color=color, lw=2)
In [6]:
def plot_yellow_red(date, p_red=0.5, p_yellow=0.75):
plot_mag_limit_vs_t_ccd(p_red, 'r', date)
plot_mag_limit_vs_t_ccd(p_yellow, 'g', date)
plt.hlines([10.6, 10.3], -20, -13, linestyle='--', colors=['r', 'g'])
plt.grid()
plt.legend(loc='best')
plt.xlabel('T_ccd (degC)')
plt.ylabel('Mag limit')
plt.title('Red and yellow mag limits for {}'.format(date));
In [7]:
plot_yellow_red('2015:001')
In [8]:
plot_yellow_red('2017:001')
In [9]:
plot_yellow_red('2020:001')