Generate tables of statistics per-label for the supplement
In [ ]:
import sys
import glob
import re
import fnmatch
import math
import datetime
import re
import os
from os import listdir
from os.path import join, isfile, basename
import itertools
import numpy as np
from numpy import float32, int32, uint8, dtype, genfromtxt
from scipy.stats import ttest_ind
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator, LogLocator, FormatStrFormatter
%matplotlib inline
sys.path.append("../") # go to parent dir
import template_common as tc
In [ ]:
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:90% !important; }</style>"))
In [ ]:
# Global options
write_files_and_tables = True
In [ ]:
dist_df, jac_df, hess_df, timeMem_df = tc.readStatTables()
grouped_label_table, total_table = tc.groupTables( dist_df, jac_df, hess_df, timeMem_df, tc.template_list )
In [ ]:
template_order = ['JFRC2010','JFRC2013','JRC2018','FCWB','Tefor']
alg_order = ['ANTs A','ANTs B','ANTs C','CMTK A','CMTK B','CMTK C', 'Elastix A', 'Elastix B']
pd.options.display.float_format = '{:,.3f}'.format
row_order_tuples = [(x,y) for x,y in itertools.product( template_order, alg_order )]
date_string = datetime.date.today().strftime('%Y%m%d')
for label in tc.labels:
print( label )
df_l = dist_table[ dist_table.LABEL == label ]
df_writeme = df_l[['TEMPLATE','ALG','DISTANCE_mean','DISTANCE_std','DISTANCE_p10','DISTANCE_median','DISTANCE_p90','count']]
df_writeme.columns = ['Template','Algorithm','Mean','Std dev','10th perc','median','90th perc','N']
df_writeme = tc.toFloat( df_writeme, ['Mean','Std dev','10th perc','median','90th perc'] )
df_writeme = df_writeme.set_index( ['Template','Algorithm'])
# Re-order rows as desired
df_writeme = df_writeme.loc[pd.MultiIndex.from_tuples( row_order_tuples )]
print( df_writeme )
f = 'label_tables/label_%s_%s.tex' % ( label, date_string )
if( write_files_and_tables ):
print( f )
with open( f, 'w') as tex_file:
print( '\\begin{table}', file=tex_file )
print( df_writeme.to_latex( multirow='True'), file=tex_file)
print( '\caption{{ {} }}'.format( tc.get_label_string( label ).replace('_','\_')), file=tex_file )
print( '\caption{{ {} }}'.format( tc.get_label_string( label ).replace('_','\_')) )
print( '\end{table}', file=tex_file )