In [1]:
import x_map
%matplotlib inline

In [4]:
__version__ = '0.0.1'
__author__ = 'Maximilian Singh'
__copyright__ = 'Maximilian Singh'

Generate map


In [3]:
import random
import numpy as np

# generate random points on map with given deviation
lat, long = (49.87087, 11.08979)
dev = 1 / 500
data = np.array([[lat + (dev + dev) * i / 30 - dev, long + random.uniform(-dev, dev), - random.randint(0, 100)] for i in range(30)])

x_map.plot(data)


4 6
/tmp/smopy_cache_139145_89048_18.png
/tmp/smopy_cache_139145_89049_18.png
/tmp/smopy_cache_139145_89050_18.png
/tmp/smopy_cache_139145_89051_18.png
/tmp/smopy_cache_139145_89052_18.png
/tmp/smopy_cache_139145_89053_18.png
/tmp/smopy_cache_139146_89048_18.png
/tmp/smopy_cache_139146_89049_18.png
/tmp/smopy_cache_139146_89050_18.png
/tmp/smopy_cache_139146_89051_18.png
/tmp/smopy_cache_139146_89052_18.png
/tmp/smopy_cache_139146_89053_18.png
/tmp/smopy_cache_139147_89048_18.png
/tmp/smopy_cache_139147_89049_18.png
/tmp/smopy_cache_139147_89050_18.png
/tmp/smopy_cache_139147_89051_18.png
/tmp/smopy_cache_139147_89052_18.png
/tmp/smopy_cache_139147_89053_18.png
/tmp/smopy_cache_139148_89048_18.png
/tmp/smopy_cache_139148_89049_18.png
/tmp/smopy_cache_139148_89050_18.png
/tmp/smopy_cache_139148_89051_18.png
/tmp/smopy_cache_139148_89052_18.png
/tmp/smopy_cache_139148_89053_18.png
(1024, 1536)

In [ ]: