In [3]:
%matplotlib inline
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn import cluster
In [4]:
data, labels_true = datasets.make_blobs(n_samples=750, centers=[[1,1],[0,5],[2,8]], cluster_std=0.7,
random_state=0)
plt.scatter(data[:,0], data[:,1])
df = pd.DataFrame(data, columns=['X', 'Y'])
In [5]:
kmeans = cluster.KMeans(n_clusters=2)
label = kmeans.fit_predict(data)
df['label'] = label
fig = plt.figure()
fig.suptitle('K-means n=2', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
for i in range(kmeans.n_clusters):
plt.scatter(df[df.label == i].X, df[df.label == i].Y, label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
for i in kmeans.cluster_centers_:
plt.scatter(i[0], i[1], color='black', marker='+', s=100)
plt.legend(bbox_to_anchor=(1.25, 1))
Out[5]:
Clustering with 3 clusters
In [6]:
kmeans = cluster.KMeans(n_clusters=3)
label = kmeans.fit_predict(data)
df['label'] = label
fig = plt.figure()
fig.suptitle('K-means n=3', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
for i in range(kmeans.n_clusters):
plt.scatter(df[df.label == i].X, df[df.label == i].Y, label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
for i in kmeans.cluster_centers_:
plt.scatter(i[0], i[1], color='black', marker='+', s=100)
plt.legend(bbox_to_anchor=(1.25, 1))
Out[6]:
Clustering with 4 clusters
In [7]:
kmeans = cluster.KMeans(n_clusters=4)
label = kmeans.fit_predict(data)
df['label'] = label
fig = plt.figure()
fig.suptitle('K-means n=4', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
for i in range(kmeans.n_clusters):
plt.scatter(df[df.label == i].X, df[df.label == i].Y, label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
for i in kmeans.cluster_centers_:
plt.scatter(i[0], i[1], color='black', marker='+', s=100)
plt.legend(bbox_to_anchor=(1.25, 1))
Out[7]:
In [8]:
kmeans = cluster.KMeans(n_clusters=5)
label = kmeans.fit_predict(data)
df['label'] = label
fig = plt.figure()
fig.suptitle('K-means n=5', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
for i in range(kmeans.n_clusters):
plt.scatter(df[df.label == i].X, df[df.label == i].Y, label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
for i in kmeans.cluster_centers_:
plt.scatter(i[0], i[1], color='black', marker='+', s=100)
plt.legend(bbox_to_anchor=(1.25, 1))
Out[8]:
In [9]:
data, t = datasets.make_swiss_roll(n_samples=200, noise=0.1, random_state=0)
df = pd.DataFrame(data, columns=['X', 'Y', 'Z'])
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
ax.scatter(df.X, df.Y, df.Z, 'o')
Out[9]:
In [10]:
kmeans = cluster.KMeans(n_clusters=2)
label = kmeans.fit_predict(data, )
df['label'] = label
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
fig.suptitle('K-means n=2', fontsize=14, fontweight='bold')
for l in np.unique(label):
ax.scatter(df[df.label == l].X, df[df.label == l].Y, df[df.label == l].Z,
'o', color=plt.cm.jet(np.float(l) / len(np.unique(label))))
In [11]:
kmeans = cluster.KMeans(n_clusters=3)
label = kmeans.fit_predict(data, )
df['label'] = label
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
fig.suptitle('K-means n=3', fontsize=14, fontweight='bold')
for l in np.unique(label):
ax.scatter(df[df.label == l].X, df[df.label == l].Y, df[df.label == l].Z,
'o', color=plt.cm.jet(np.float(l) / len(np.unique(label))))
In [12]:
kmeans = cluster.KMeans(n_clusters=4)
label = kmeans.fit_predict(data, )
df['label'] = label
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
fig.suptitle('K-means n=4', fontsize=14, fontweight='bold')
for l in np.unique(label):
ax.scatter(df[df.label == l].X, df[df.label == l].Y, df[df.label == l].Z,
'o', color=plt.cm.jet(np.float(l) / len(np.unique(label))))
In [13]:
kmeans = cluster.KMeans(n_clusters=5)
label = kmeans.fit_predict(data, )
df['label'] = label
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
fig.suptitle('K-means n=5', fontsize=14, fontweight='bold')
for l in np.unique(label):
ax.scatter(df[df.label == l].X, df[df.label == l].Y, df[df.label == l].Z,
'o', color=plt.cm.jet(np.float(l) / len(np.unique(label))))