In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn import cluster
from sklearn import manifold
In [2]:
data, labels_true = datasets.make_blobs(n_samples=750, centers=[[1,1],[0,5],[2,8]], cluster_std=0.7,
random_state=0)
plt.scatter(data[:,0], data[:,1])
df = pd.DataFrame(data, columns=['X', 'Y'])
In [3]:
hclust = cluster.AgglomerativeClustering(n_clusters=2)
label = hclust.fit_predict(df)
df['label'] = label
fig = plt.figure()
fig.suptitle('Agglomerative n=2', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
clusters = list(set(label))
for i in range(len(clusters)):
plt.scatter(df[df.label == clusters[i]].X, df[df.label == clusters[i]].Y,
label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
plt.legend(bbox_to_anchor=(1.25, 1))
Out[3]:
Clustering with 3 clusters
In [4]:
hclust = cluster.AgglomerativeClustering(n_clusters=3)
label = hclust.fit_predict(df)
df['label'] = label
fig = plt.figure()
fig.suptitle('Agglomerative n=3', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
clusters = list(set(label))
for i in range(len(clusters)):
plt.scatter(df[df.label == clusters[i]].X, df[df.label == clusters[i]].Y,
label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
plt.legend(bbox_to_anchor=(1.25, 1))
Out[4]:
Clustering with 4 clusters
In [5]:
hclust = cluster.AgglomerativeClustering(n_clusters=4)
label = hclust.fit_predict(df)
df['label'] = label
fig = plt.figure()
fig.suptitle('Agglomerative n=4', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
clusters = list(set(label))
for i in range(len(clusters)):
plt.scatter(df[df.label == clusters[i]].X, df[df.label == clusters[i]].Y,
label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
plt.legend(bbox_to_anchor=(1.25, 1))
Out[5]:
In [6]:
hclust = cluster.AgglomerativeClustering(n_clusters=5)
label = hclust.fit_predict(df)
df['label'] = label
fig = plt.figure()
fig.suptitle('Agglomerative n=5', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
clusters = list(set(label))
for i in range(len(clusters)):
plt.scatter(df[df.label == clusters[i]].X, df[df.label == clusters[i]].Y,
label=i, color=plt.cm.jet(np.float(i) / len(np.unique(label))))
plt.legend(bbox_to_anchor=(1.25, 1))
Out[6]:
In [7]:
data, t = datasets.make_swiss_roll(n_samples=200, noise=0.1, random_state=0)
df = pd.DataFrame(data, columns=['X', 'Y', 'Z'])
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
ax.scatter(df.X, df.Y, df.Z, 'o')
Out[7]:
In [11]:
hclust = cluster.AgglomerativeClustering(n_clusters=2)
label = hclust.fit_predict(data)
df['label'] = label
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
fig.suptitle('AgglomerativeClustering n=2', fontsize=14, fontweight='bold')
for i, l in enumerate(np.unique(label)):
ax.scatter(df[df.label == l].X, df[df.label == l].Y, df[df.label == l].Z, 'o',
color=plt.cm.jet(np.float(i) / len(np.unique(label))), label=l)
plt.legend(bbox_to_anchor=(1.25, 1))
Out[11]:
In [18]:
hclust = cluster.AgglomerativeClustering(n_clusters=5)
label = hclust.fit_predict(data)
df['label'] = label
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
fig.suptitle('AgglomerativeClustering n=5', fontsize=14, fontweight='bold')
for i, l in enumerate(np.unique(label)):
ax.scatter(df[df.label == l].X, df[df.label == l].Y, df[df.label == l].Z, 'o',
color=plt.cm.jet(np.float(i) / len(np.unique(label))), label=l)
plt.legend(bbox_to_anchor=(1.25, 1))
Out[18]:
In [ ]: