In [2]:
# importamos bibliotecas cómputo de matrices
import numpy as np
# importamos bibliotecas para plotear
import matplotlib
import matplotlib.pyplot as plt
# para desplegar los plots en el notebook
%matplotlib inline
In [87]:
# acá lambda=3.65 que es un lugar crítico en la frontera del Caos!
# pero: probad 3.1 y 3.3
def f(x):
return 3.58*(1-x)*x
x = np.arange(0,1,0.01)
for t in range(2,len(x)-1):
x[t+1] = f(x[t])
figura = plt.plot( x )
#fig1 = plt.plot([x[t] for t in range(999)], [x[t+1] for t in range(999)])
# fig2 = plt.plot(f(x), f(f(x)))
In [19]:
def f(x):
if 0 <= x and x<=0.5:
return 2 * x
elif 0.5 <= x and x <= 1:
return 2 - (2 * x)
x = np.arange(0,1,0.001)
figura = plt.plot(x, [f(y) for y in x])
figura = plt.plot(x, x)
In [29]:
figura = plt.plot(x, x)
figura = plt.plot(x, [f(y) for y in x])
figura = plt.plot(x, [f(f(y)) for y in x])
figura = plt.plot(x, [f(f(f(y))) for y in x])
figura = plt.plot(x, [f(f(f(f(y)))) for y in x])
figura = plt.plot(x, [f(f(f(f(f(y))))) for y in x])
In [ ]:
fig = plt.plot()
In [40]:
def f(x, b):
return (x + b)%1
y = np.arange(0,1,0.01)
x = [0.4,]
x1 = [0.4,]
b = 1/np.pi
for t in range(len(y)-1):
x.append(f(x[t], b))
x1.append(f(f(x[t], b), b))
fig = plt.plot(y,y, color="orange")
fig = plt.plot(y,x)
fig = plt.plot(y, x1)
In [42]:
x = [0.4,]
x1 = [0.4,]
b = np.sqrt(2)
for t in range(len(y)-1):
x.append(f(x[t], b))
x1.append(f(f(x[t], b), b))
fig = plt.plot(y,y, color="orange")
fig = plt.plot(y,x)
fig = plt.plot(y, x1)
Out[42]:
In [44]:
x = [0.4,]
x1 = [0.4,]
b = np.e
for t in range(len(y)-1):
x.append(f(x[t], b))
x1.append(f(f(x[t], b), b))
fig = plt.plot(y,y, color="orange")
fig = plt.plot(y,x)
fig = plt.plot(y, x1)
In [75]:
def f(x):
r=0.25
K=15
if x < K:
return 0.01 * (x**2)
elif x >= K:
return 0.01*(K**2)*np.exp(-r*(x-K))
x = [9,]
for t in range(30):
x.append(f(x[t]))
fig=plt.plot(x)