In [1]:
import numpy as np
from keras.models import Model
from keras.layers import Input
from keras.layers.core import Dense
from keras.layers.noise import GaussianDropout
from keras import backend as K
import json
from collections import OrderedDict
In [2]:
def format_decimal(arr, places=6):
return [round(x * 10**places) / 10**places for x in arr]
In [3]:
DATA = OrderedDict()
[noise.GaussianDropout.0] should pass through
In [4]:
layer_0 = Input(shape=(6,))
layer_1 = Dense(2)(layer_0)
layer_2 = GaussianDropout(0.5)(layer_1)
model = Model(inputs=layer_0, outputs=layer_2)
# seed for reproducibility
np.random.seed(250)
W = np.random.randn(6,2)
b = np.random.randn(2)
model.set_weights([W, b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
print('weights: ',W)
print('bias: ',b)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['noise.GaussianDropout.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W, b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
In [5]:
print(json.dumps(DATA))
In [ ]: