In [1]:
import numpy as np
from keras.models import Model
from keras.layers import Input
from keras.layers.advanced_activations import LeakyReLU, PReLU, ELU, ThresholdedReLU
from keras import backend as K
import json
from collections import OrderedDict
In [2]:
def format_decimal(arr, places=6):
return [round(x * 10**places) / 10**places for x in arr]
In [3]:
DATA = OrderedDict()
[advanced_activations.LeakyReLU.0] alpha=0.4
In [4]:
layer_0 = Input(shape=(6,))
layer_1 = LeakyReLU(alpha=0.4)(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, -0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['advanced_activations.LeakyReLU.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
[advanced_activations.PReLU.0] weights: alpha
In [5]:
layer_0 = Input(shape=(6,))
layer_1 = PReLU()(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
alpha = np.array([-0.03, -0.02, 0.02, -0.03, -0.03, -0.01])
model.set_weights([alpha])
data_in = [0, 0.2, -0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['advanced_activations.PReLU.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [alpha]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[advanced_activations.ELU.0] alpha=1.1
In [6]:
layer_0 = Input(shape=(6,))
layer_1 = ELU(alpha=1.1)(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, -0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['advanced_activations.ELU.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
[advanced_activations.ThresholdedReLU.0] theta=0.9
In [7]:
layer_0 = Input(shape=(6,))
layer_1 = ThresholdedReLU(theta=0.9)(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['advanced_activations.ThresholdedReLU.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
In [8]:
print(json.dumps(DATA))
In [ ]: