In [1]:
import numpy as np
from keras.models import Model
from keras.layers import Input
from keras.layers.core import Permute
from keras import backend as K
import json
from collections import OrderedDict
In [2]:
def format_decimal(arr, places=6):
return [round(x * 10**places) / 10**places for x in arr]
In [3]:
DATA = OrderedDict()
[core.Permute.0] shape [3, 2] -> [2, 3]
In [4]:
layer_0 = Input(shape=(3, 2))
layer_1 = Permute((2, 1))(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (3, 2)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['core.Permute.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
[core.Permute.1] shape [2, 3, 4] -> [4, 3, 2]
In [5]:
layer_0 = Input(shape=(2, 3, 4))
layer_1 = Permute((3, 2, 1))(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (2, 3, 4)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['core.Permute.1'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
In [6]:
print(json.dumps(DATA))
Out[6]:
In [ ]: