In [1]:
import numpy as np
from keras.models import Model
from keras.layers import Input
from keras.layers.core import Permute
from keras import backend as K
import json
from collections import OrderedDict
In [2]:
def format_decimal(arr, places=6):
return [round(x * 10**places) / 10**places for x in arr]
In [3]:
DATA = OrderedDict()
[core.Permute.0] shape [3, 2] -> [2, 3]
In [4]:
data_in_shape = (3, 2)
layer_0 = Input(shape=data_in_shape)
layer_1 = Permute((2, 1))(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['core.Permute.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
[core.Permute.1] shape [2, 3, 4] -> [4, 3, 2]
In [5]:
data_in_shape = (2, 3, 4)
layer_0 = Input(shape=data_in_shape)
layer_1 = Permute((3, 2, 1))(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2]
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['core.Permute.1'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
[core.Permute.2] shape [1, 6, 4] -> [6, 1, 4]
In [6]:
data_in_shape = (1, 6, 4)
layer_0 = Input(shape=data_in_shape)
layer_1 = Permute((2, 1, 3))(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2]
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['core.Permute.2'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
[core.Permute.3] shape [1, 3, 4, 2] -> [4, 1, 3, 2]
In [7]:
data_in_shape = (1, 3, 4, 2)
layer_0 = Input(shape=data_in_shape)
layer_1 = Permute((3, 1, 2, 4))(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)
data_in = [0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2, 0, 0.2, 0.5, -0.1, 1, 2]
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['core.Permute.3'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'expected': {'data': data_out, 'shape': data_out_shape}
}
In [8]:
import os
filename = '../../../test/data/layers/core/Permute.json'
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
with open(filename, 'w') as f:
json.dump(DATA, f)
In [9]:
print(json.dumps(DATA))
In [ ]: