In [1]:
#general imports
import pygslib
In [2]:
#get the data in gslib format into a pandas Dataframe
cluster= pygslib.gslib.read_gslib_file('../datasets/cluster.dat')
true= pygslib.gslib.read_gslib_file('../datasets/true.dat')
true['Declustering Weight'] = 1
In [3]:
npoints = len(cluster['Primary'])
true['Declustering Weight'] = 1
#using declustering wight
parameters_qpplt = {
# gslib parameters for qq-pp calculation
'qqorpp': 0, # integer (Optional, default 0, Q-Q plot). Q-Q plot (qqorpp=0); P-P plot (qqorpp=1)
#'npts' : None, # integer (Optional, default min length of va1 and va2). Number of points to use on the Q-Q or P-P plot (should not exceed the smallest number of data in data1 / data2
'va1' : cluster['Primary'], # rank-1 array('d') with bounds (nd). Variable 1
'wt1' : cluster['Declustering Weight'], # rank-1 array('d') with bounds (nd) (Optional, set to array of ones). Declustering weight for variable 1.
'va2' : true['Primary'], # rank-1 array('d') with bounds (nd). Variable 2
'wt2' : true['Declustering Weight'], # rank-1 array('d') with bounds (nd) (Optional, set to array of ones). Declustering weight for variable 2.
# visual parameters for figure (if a new figure is created)
#'figure' : None, # a bokeh figure object (Optional: new figure created if None). Set none or undefined if creating a new figure.
#'title' : None, # string (Optional, "QQ plot" or "PP plot"). Figure title
#'xlabel' : 'Z1', # string (Optional, default "Z1" or "P1"). X axis label
#'ylabel' : 'Z2', # string (Optional, default "Z2" or "P2"). Y axis label
#'xlog' : True, # boolean (Optional, default True). If true plot X axis in log sale.
#'ylog' : True, # boolean (Optional, default True). If true plot Y axis in log sale.
# visual parameter for the probplt
#'style' : None, # string with valid bokeh chart type
'color' : 'black', # string with valid CSS colour (https://www.w3schools.com/colors/colors_names.asp), or an RGB(A) hex value, or tuple of integers (r,g,b), or tuple of (r,g,b,a) (Optional, default "navy")
'legend': 'Declustered', # string (Optional, default "NA").
#'alpha' : None, # float [0-1] (Optional, default 0.5). Transparency of the fill colour
#'lwidth': None, # float (Optional, default 1). Line width
# leyend
'legendloc': None} # float (Optional, default 'bottom_right'). Any of top_left, top_center, top_right, center_right, bottom_right, bottom_center, bottom_left, center_left
In [4]:
# Calculate the non declustered qq plot
results, fig = pygslib.plothtml.qpplt(parameters_qpplt)
In [5]:
# Calculate declustered qqplot
# a) get array of ones as weights
cluster['naive']= cluster['Declustering Weight'].values*0 +1
# update parameter dic
parameters_qpplt['wt1'] = cluster['naive']
parameters_qpplt['color'] = 'blue'
parameters_qpplt['legend']='Clustered'
results, fig = pygslib.plothtml.qpplt(parameters_qpplt)
In [6]:
# show the plot
pygslib.plothtml.show(fig)
In [ ]: