In [1]:
#general imports
import matplotlib.pyplot as plt
import pygslib
import numpy as np
#make the plots inline
%matplotlib inline
In [2]:
#get the data in gslib format into a pandas Dataframe
cluster= pygslib.gslib.read_gslib_file('../datasets/cluster.dat')
true= pygslib.gslib.read_gslib_file('../datasets/true.dat')
true['Declustering Weight'] = 1
This is not plotting results but is handy to get declustered bins for plots
In [3]:
print pygslib.gslib.__plot.qpplt.__doc__
In [4]:
npoints = len(cluster['Primary'])
true['Declustering Weight'] = 1
#using declustering wight
parameters_qpplt = {
'qqorpp' : 0, # Q-Q plot (qqorpp=0); P-P plot (qqorpp=1)
'npts' : npoints, # number of points to use on the Q-Q or P-P plot (should not exceed the smallest number of data in data1 / data2
'va1' : cluster['Primary'], # array('d') with bounds (nd)
'va2' : true['Primary'], # array('d') with bounds (nd)
'wt1' : cluster['Declustering Weight'],# array('d') with bounds (nd)
'wt2' : true['Declustering Weight']} # array('d') with bounds (nd)
vr1a,vr2a,error = pygslib.gslib.__plot.qpplt(**parameters_qpplt)
print 'error ? ', error != 0
#ignoring declustering wight
cluster['No Weight'] =1
parameters_qpplt['wt1'] = cluster['No Weight']
vr1b,vr2b,error = pygslib.gslib.__plot.qpplt(**parameters_qpplt)
print 'error ? ', error != 0
In [5]:
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plt.plot (vr1a, vr2a, 'o', label = 'declustered')
plt.plot (vr1b, vr2b, 'o', label = ' non declustered')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel ('cluster dataset')
ax.set_ylabel ('true dataset')
ax.set_title ('QQ PLot')
plt.legend(loc=4)
plt.grid(True)
fig.show
Out[5]:
In [6]:
npoints = len(cluster['Primary'])
true['Declustering Weight'] = 1
#using declustering wight
parameters_qpplt = {
'qqorpp' : 1, # Q-Q plot (qqorpp=0); P-P plot (qqorpp=1)
'npts' : npoints, # number of points to use on the Q-Q or P-P plot (should not exceed the smallest number of data in data1 / data2
'va1' : cluster['Primary'], # array('d') with bounds (nd)
'va2' : true['Primary'], # array('d') with bounds (nd)
'wt1' : cluster['Declustering Weight'],# array('d') with bounds (nd)
'wt2' : true['Declustering Weight']} # array('d') with bounds (nd)
vr1a,vr2a,error = pygslib.gslib.__plot.qpplt(**parameters_qpplt)
print 'error ? ', error != 0
#ignoring declustering wight
cluster['No Weight'] =1
parameters_qpplt['wt1'] = cluster['No Weight']
vr1b,vr2b,error = pygslib.gslib.__plot.qpplt(**parameters_qpplt)
print 'error ? ', error != 0
In [7]:
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plt.plot (vr1a, vr2a, 'o', label = 'declustered')
plt.plot (vr1b, vr2b, 'o', label = ' non declustered')
#ax.set_xscale('log')
#ax.set_yscale('log')
ax.set_xlabel ('cluster dataset')
ax.set_ylabel ('true dataset')
ax.set_title ('PP PLot')
plt.legend(loc=4)
plt.grid(True)
fig.show
Out[7]:
In [ ]: