The GSLIb equivalent parameter file is
                  Parameters for DRAW
                  *******************
START OF PARAMETERS:
data/cluster.dat              \file with data
3                                \   number of variables
1   2   3                        \   columns for variables
0                                \   column for probabilities (0=equal)
-1.0e21   1.0e21                 \   trimming limits
69069    100                     \random number seed, number to draw
draw.out                         \file for realizations
In [1]:
    
#general imports
import matplotlib.pyplot as plt   
import pygslib  
import numpy as np
import pandas as pd
#make the plots inline
%matplotlib inline
    
    
    
In [2]:
    
#get the data in gslib format into a pandas Dataframe
cluster  = pygslib.gslib.read_gslib_file('../datasets/cluster.dat')
print ('\n\t\tCluster Data \n',cluster.tail())
    
    
In [3]:
    
print (pygslib.gslib.__draw.draw.__doc__)
    
    
In [4]:
    
cluster['NO-Weight']=1.
parameters_draw = {
    'vr'    : cluster[['Xlocation','Ylocation','Primary']],  # data
    'wt'    : cluster['NO-Weight'],                          # weight/prob (use wt[:]=1 for equal probability)
    'rseed' : 69069,                                         # random number seed (conditioning cat.)
    'ndraw' : 100}                                           # number to draw
vo,sumwts,error = pygslib.gslib.__draw.draw(**parameters_draw)
print ('error ? ',  error != 0, error)
print ('is 1./sumwts == nd?', 1./sumwts, len(cluster))
    
    
In [5]:
    
#making the output (which is numpy array) a pandas dataframe for nice printing
dfvo=pd.DataFrame(vo,columns= ['Xlocation','Ylocation','Primary'])
    
In [6]:
    
print (dfvo.head(6))
print ('******')
print (dfvo.tail(6))
    
    
Results in GSLIB
   Xlocation    Ylocation      Primary
      31.500       41.500       22.750
       8.500       45.500       0.8100
      39.500       30.500        7.940
       3.500       23.500        1.380
      45.500       22.500        0.930
********
      41.500       45.500        2.750
       2.500        9.500        6.260
      11.500       46.500       0.4000
      21.500       34.500        2.840
       3.500       47.500        1.960
       2.500        8.500        8.900
In [ ]: