In [1]:
from brian import *


/usr/lib/pymodules/python2.7/brian/utils/sparse_patch/__init__.py:36: UserWarning: Couldn't find matching sparse matrix patch for scipy version 0.10.1, but in most cases this shouldn't be a problem.
  warnings.warn("Couldn't find matching sparse matrix patch for scipy version %s, but in most cases this shouldn't be a problem." % scipy.__version__)

In [2]:
eqs = Equations("""
X = xi : second**-.5
dg/dt = (g + X*siemens*meter**-2*second**.5)/second : siemens*meter**-2"""
)

In [3]:
ng = NeuronGroup(1, model=eqs)
ng.g = 0
print ng._eqs


dg/dt = (g + (X_xi)*siemens*meter**-2*second**.5)/second [diffeq]
X = X_xi [eq]


In [4]:
monit = {}
for p in ['g', 'X']:
    monit[p] = StateMonitor(ng, p, record=True)

In [5]:
run(500*msecond, report="text")


100% complete, 0s elapsed, approximately 0s remaining.

In [6]:
for p in monit:
    figure()
    monit[p].plot()
    ylabel(p)
show()
pas de variation de X, donc de g non plus. alors que X devrait suivre une loi normale (0, 1)