Sample Crash/etc Data Set - Received Dec. 7th 2015

All columns names and allowed values can be referenced in the CrashDataDictionary.pdf file.

Crash Data

Load Data


In [1]:
#Load Packages
import pandas as pd
import numpy as np
from IPython.display import display, HTML
low_memory = False

local_path = "/Users/michaeldowd/"
#Load the csv's 
clion_lookup = pd.read_csv(local_path + "Google Drive/Dowd_Local/Data/1st_Sample/c_lion_node_lookup_sample.csv")
crashes =      pd.read_csv(local_path + "Google Drive/Dowd_Local/Data/1st_Sample/crashes_sample.csv")
vehicles =     pd.read_csv(local_path + "Google Drive/Dowd_Local/Data/1st_Sample/vehicle_sample.csv")
factors =      pd.read_csv(local_path + "Google Drive/Dowd_Local/Data/1st_Sample/factor_sample.csv")

print "done"


/Users/michaeldowd/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/IPython/core/interactiveshell.py:2902: DtypeWarning: Columns (5,32,73) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)
/Users/michaeldowd/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/IPython/core/interactiveshell.py:2902: DtypeWarning: Columns (4,19) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)
done

Crashes Column List


In [2]:
display(HTML(pd.DataFrame(list(crashes.columns)).to_html()))


0
0 gid
1 case_num
2 case_yr
3 ref_mrkr
4 accd_dte
5 road_sys
6 num_of_fat
7 num_of_inj
8 reportable
9 police_dep
10 intersect_
11 muni
12 precinct
13 num_of_veh
14 accd_typ
15 locn
16 traf_cntl
17 light_cond
18 weather
19 road_char
20 road_surf_
21 collision_
22 ped_loc
23 ped_actn
24 ext_of_inj
25 regn_cnty_
26 accd_tme
27 rpt_agcy
28 dmv_accd_c
29 traf_way
30 rdway_acc_
31 err_cde
32 comm_veh_a
33 highway_in
34 intersect1
35 utm_northi
36 utm_eastin
37 geo_segmen
38 geo_node_i
39 geo_node_d
40 geo_node_1
41 geo_lcode
42 geom
43 loc
44 nodeid
45 segmentid1
46 segmentid2
47 segmentid3
48 segmentid4
49 segmentid5
50 segmentid6
51 segmentid7
52 segmentid8
53 exclude
54 accd_type_int
55 revized
56 crashid
57 boro
58 st_nm
59 alis_node
60 alis_mastr
61 x
62 y
63 st_x
64 st_y
65 wrong_pct
66 c_node
67 nddist
68 t_node
69 tnddist
70 t_seg
71 cleanname
72 final_node
73 issue

Null/NaN Totals by Column

See total & percent of null values by each column (where null values are present)


In [3]:
#How many nulls in each column (only show columns with more than zero nulls)
crash_nulls = crashes.isnull().sum()
crash_nulls = crash_nulls[crash_nulls > 0]

def getPercNull(df, master_df):
    #Function for calculation percent of records that are null
    percents = []
    for b in df.iterrows():
        try:
            percents.append(b[1].Count/float(len(master_df[b[0]])))
        except:
            percents.append("NA")
    
    df['perc_null'] = percents

crash_nulls = pd.DataFrame(crash_nulls, columns = ["Count"])
getPercNull(crash_nulls, crashes)

display(HTML(crash_nulls.to_html()))
print "Total Records : " , len(crashes)


Count perc_null
ref_mrkr 31005 0.979776
police_dep 7888 0.249265
intersect_ 31366 0.991183
precinct 7909 0.249929
locn 2 0.000063
ext_of_inj 8092 0.255712
accd_tme 1210 0.038237
rpt_agcy 3360 0.106178
traf_way 2114 0.066804
rdway_acc_ 2114 0.066804
err_cde 10118 0.319735
intersect1 4748 0.150040
geo_node_1 13872 0.438363
nodeid 6490 0.205088
segmentid1 25155 0.794912
segmentid2 31645 1.000000
segmentid3 31645 1.000000
segmentid4 31645 1.000000
segmentid5 31645 1.000000
segmentid6 31645 1.000000
segmentid7 31645 1.000000
segmentid8 31645 1.000000
revized 31645 1.000000
st_nm 12357 0.390488
st_x 31645 1.000000
st_y 31645 1.000000
wrong_pct 31638 0.999779
c_node 31645 1.000000
nddist 31645 1.000000
t_node 6490 0.205088
tnddist 31645 1.000000
t_seg 25155 0.794912
cleanname 12357 0.390488
final_node 31645 1.000000
issue 31636 0.999716
Total Records :  31645

Determine Priority Columns

Priority columns are those columns that may be used as an explanatory variable


In [4]:
priority_cols_crashes = ['case_yr', "road_sys", "reportable", "accd_typ", "num_of_veh", "traf_cntl", "light_cond", \
    "weather", "road_char","road_surf_", "collision_","ped_loc",  \
                 "ped_actn", "ext_of_inj","regn_cnty_", "dmv_accd_c", "err_cde", \
                "highway_in", "intersect1" ]

In [39]:
def summarize(column_list, master_df, include_sums = True):
    """
    Cycles through the columns in the priority cols list and does a simple aggregate, 
    total number of cases for each column, the sum of fatalities, and the sum of injuries.
    """
    print 5*">", "START", 5 * "<"
    for col in column_list:
        print ">"*20
        print col.upper()
        
        if include_sums:
            out =  master_df[[col, 'crashid', "num_of_fat", "num_of_inj"]].groupby(col)
            aggout =  out.agg({'crashid':{'count' :  'count' },
                          'num_of_fat' : {'sum' : 'sum'}, 
                          'num_of_inj' : {'sum' : 'sum'}
                          })
        elif include_sums == "Vehicles":
            out =  master_df[[col, 'crashid', "num_of_fat", "num_of_inj"]].groupby(col)
            aggout =  out.agg({'crashid':{'count' :  'count' },
                                'num_of_fat' : {'sum' : lambda x: np.sum(x)}
              })
        else:
            out =  master_df[[col, 'crashid']].groupby(col)
            aggout =  out.agg({'crashid':{'count' :  'count' }
              })
        display(HTML(aggout.to_html()))
    print 5*">", "END", 5 * "<"
    return aggout

Crash Data Summary of Priority Columns

Total number of indcidents, fatalities and injuries by each priority column.


In [6]:
print 5*">", "Crash Data", 5 * "<"
summarize(priority_cols_crashes, crashes)


>>>>> Crash Data <<<<<
>>>>> START <<<<<
>>>>>>>>>>>>>>>>>>>>
CASE_YR
num_of_inj crashid num_of_fat
sum count sum
case_yr
2001 3852 3322 9
2002 3520 2730 8
2003 3019 2351 5
2004 2531 2087 8
2005 2300 1927 4
2006 2241 2089 4
2007 2142 2304 7
2008 2158 2313 9
2009 2268 2404 5
2010 2069 2152 8
2011 2230 2142 4
2012 1711 1816 2
2013 2007 2014 7
2014 1940 1994 6
>>>>>>>>>>>>>>>>>>>>
ROAD_SYS
num_of_inj crashid num_of_fat
sum count sum
road_sys
9 6 7 0
12 7061 7062 18
01 87 60 0
02 8 6 0
03 63 49 0
04 17865 15150 37
05 20 16 0
09 44 46 0
10 0 2 0
11 592 517 2
12 8103 8589 29
15 2 1 0
?? 79 96 0
XX 58 44 0
>>>>>>>>>>>>>>>>>>>>
REPORTABLE
num_of_inj crashid num_of_fat
sum count sum
reportable
N 3 4 0
Y 33985 31641 86
>>>>>>>>>>>>>>>>>>>>
ACCD_TYP
num_of_inj crashid num_of_fat
sum count sum
accd_typ
01 25181 23023 22
02 5280 5065 46
03 2478 2442 10
04 3 3 0
06 7 7 0
08 64 62 0
10 137 161 1
11 120 112 2
12 17 15 0
13 14 11 0
14 18 18 0
15 38 40 0
16 55 56 0
17 39 43 2
18 21 29 0
19 9 11 0
20 2 4 0
21 28 23 0
22 1 2 0
23 7 9 0
24 15 21 0
25 3 3 0
26 10 11 0
27 40 38 0
30 118 134 1
31 22 20 0
32 1 6 0
40 214 234 0
XX 9 5 0
YY 3 3 0
ZZ 34 34 2
>>>>>>>>>>>>>>>>>>>>
NUM_OF_VEH
num_of_inj crashid num_of_fat
sum count sum
num_of_veh
0 0 2 0
1 8532 8406 55
2 21230 20550 22
3 3155 2056 4
4 739 461 3
5 218 118 0
6 56 30 0
7 31 11 0
8 9 4 0
9 7 3 2
10 9 3 0
12 2 1 0
>>>>>>>>>>>>>>>>>>>>
TRAF_CNTL
num_of_inj crashid num_of_fat
sum count sum
traf_cntl
01 8585 8628 17
02 19342 15726 57
03 1547 1209 4
04 50 63 0
05 25 28 0
06 61 56 0
07 34 36 0
08 0 1 0
09 4 5 0
10 2 2 0
11 12 13 0
12 72 73 0
13 10 13 0
14 8 8 0
15 23 32 0
16 7 16 0
20 143 208 4
XX 1 2 0
YY 62 60 0
ZZ 4000 5466 4
>>>>>>>>>>>>>>>>>>>>
LIGHT_COND
num_of_inj crashid num_of_fat
sum count sum
light_cond
1 19492 17366 45
2 678 572 6
3 1497 1242 0
4 8728 6861 33
5 117 110 2
X 1 2 0
Z 3475 5492 0
>>>>>>>>>>>>>>>>>>>>
WEATHER
num_of_inj crashid num_of_fat
sum count sum
weather
0 21 27 0
1 22385 19919 66
2 4006 3466 10
3 4047 3345 8
4 402 412 1
5 77 82 0
6 25 19 0
? 0 1 0
X 1 2 0
Z 3024 4372 1
>>>>>>>>>>>>>>>>>>>>
ROAD_CHAR
num_of_inj crashid num_of_fat
sum count sum
road_char
1 28540 24899 74
2 1319 1345 9
3 347 314 0
4 534 552 1
5 154 141 1
6 25 27 0
X 1 2 0
Y 0 1 0
Z 3068 4364 1
>>>>>>>>>>>>>>>>>>>>
ROAD_SURF_
num_of_inj crashid num_of_fat
sum count sum
road_surf_
0 37 45 0
1 24463 21728 72
2 5764 4754 12
3 14 17 0
4 561 612 2
5 126 138 0
6 14 15 0
X 1 2 0
Z 3008 4334 0
>>>>>>>>>>>>>>>>>>>>
COLLISION_
num_of_inj crashid num_of_fat
sum count sum
collision_
01 7350 6071 0
02 2558 3387 1
03 1348 913 2
04 4243 3014 4
05 319 387 0
06 100 126 0
07 269 186 4
08 373 437 0
09 13220 11479 73
10 588 611 1
XX 1 2 0
ZZ 3619 5032 1
>>>>>>>>>>>>>>>>>>>>
PED_LOC
num_of_inj crashid num_of_fat
sum count sum
ped_loc
1 6645 6272 45
2 1094 1055 14
? 2 3 0
X 2002 1766 4
Y 23675 22036 23
Z 570 513 0
>>>>>>>>>>>>>>>>>>>>
PED_ACTN
num_of_inj crashid num_of_fat
sum count sum
ped_actn
01 2457 2327 10
02 1071 1042 18
03 350 337 5
04 832 806 10
05 954 938 2
06 192 185 0
07 278 270 0
08 4 4 0
09 63 61 0
10 4 3 0
11 91 88 0
12 51 49 1
13 496 472 6
14 261 173 3
XX 2063 1821 4
YY 23675 22037 23
ZZ 1146 1032 4
>>>>>>>>>>>>>>>>>>>>
EXT_OF_INJ
num_of_inj crashid num_of_fat
sum count sum
ext_of_inj
A 1159 1159 0
AA 178 89 0
AAA 57 19 0
AAAA 16 4 0
AAAAA 45 8 0
AAAAC 5 1 0
AAABC 5 1 0
AAAC 4 1 0
AAACC 5 1 0
AAB 9 3 0
AABB 4 1 0
AAC 48 16 0
AACC 12 3 0
AACCC 10 2 0
AB 60 30 0
ABB 12 4 0
ABBB 4 1 0
ABBC 8 2 0
ABBCC 20 3 0
ABC 30 10 0
ABCC 8 2 0
ABCCC 17 3 0
AC 278 139 0
ACC 180 60 0
ACCB 4 1 0
ACCC 76 19 0
ACCCC 107 19 0
ACK 2 1 1
AKC 2 1 1
AXXXX 6 1 0
B 2193 2193 0
BB 174 87 0
BBB 33 11 0
BBBB 16 4 0
BBBBC 6 1 0
BBBC 12 3 0
BBBCC 21 4 0
BBC 87 29 0
BBCC 40 10 0
BBCCC 75 13 0
BBX 3 1 0
BC 482 241 0
BCC 270 90 0
BCCC 139 35 0
BCCCC 242 36 0
BXXXX 5 1 0
C 13873 13873 0
CA 6 3 0
CAA 3 1 0
CAAC 4 1 0
CABBA 6 1 0
CB 12 6 0
CBB 3 1 0
CBC 3 1 0
CBCC 4 1 0
CBX 3 1 0
CC 6569 3285 0
CCB 9 3 0
CCBB 4 1 0
CCC 3414 1138 0
CCCB 8 2 0
CCCC 1792 448 0
CCCCC 1778 302 0
CCCX 12 3 0
CCXC 4 1 0
CX 14 7 0
CXXX 4 1 0
K 2 61 59
KA 2 2 2
KABC 3 1 1
KAC 2 1 1
KBBB 3 1 1
KC 7 7 7
KCC 6 3 3
KK 0 3 6
KKC 1 1 2
KKCCC 6 1 2
X 18 18 0
XB 2 1 0
XC 2 1 0
XCC 9 3 0
XX 6 3 0
XXX 6 2 0
XXXX 4 1 0
>>>>>>>>>>>>>>>>>>>>
REGN_CNTY_
num_of_inj crashid num_of_fat
sum count sum
regn_cnty_
N1 1 1 0
N2 33970 31630 86
N3 7 6 0
N5 10 8 0
>>>>>>>>>>>>>>>>>>>>
DMV_ACCD_C
num_of_inj crashid num_of_fat
sum count sum
dmv_accd_c
1 37 83 86
2 28384 20363 0
3 5558 3313 0
4 0 7870 0
6 9 16 0
>>>>>>>>>>>>>>>>>>>>
ERR_CDE
num_of_inj crashid num_of_fat
sum count sum
err_cde
0 18807 15993 43
3 28 26 0
5 2 3 0
7 5 2 0
9 12 13 0
10 6 5 0
11 5171 5485 16
>>>>>>>>>>>>>>>>>>>>
HIGHWAY_IN
num_of_inj crashid num_of_fat
sum count sum
highway_in
N 33982 31626 86
Y 6 19 0
>>>>>>>>>>>>>>>>>>>>
INTERSECT1
num_of_inj crashid num_of_fat
sum count sum
intersect1
N 2715 2874 9
Y 26211 24023 66
>>>>> END <<<<<

Data Cleaning - INCOMPLETE - may be needed for other columns if we use Pandas for loading


In [15]:
#without using column value type enforcement - some mixed type colums emerged, code below corrected those in roadsys
crashes.road_sys.loc[crashes[crashes.road_sys == 12].index] = '12'
crashes.road_sys.loc[crashes[crashes.road_sys == 9].index] = '9'

pd.unique(crashes['road_sys'].ravel())


Out[15]:
array(['04', '12', '??', '03', 'XX', '11', '09', '02', '05', '01', '15',
       '10', '9'], dtype=object)

Vehicles Data

Vehicles Data Column List


In [8]:
pd.DataFrame(vehicles.columns, columns = ["Cols"])


Out[8]:
Cols
0 case_num
1 case_yr
2 veh_seq_num
3 rgst_typ
4 body_typ
5 veh_typ
6 pre_accd_actn
7 second_event
8 veh_dirn_of_trav
9 haz_cargo_ind
10 school_bus_ind
11 comm_veh_ind
12 age
13 sex
14 occupant_num
15 rgst_wgt
16 cit_ind
17 drvr_lic_st
18 veh_lic_st
19 hazmat_plac_ind
20 tow_ind
21 crashid
22 tck_bus_clsf

Null/NaN Totals by Column


In [9]:
#How many nulls in each column (only show columns with more than zero nulls)
number_of_nulls = vehicles.isnull().sum()
number_of_nulls = number_of_nulls[number_of_nulls > 0]

nulls_df = pd.DataFrame(number_of_nulls, columns = ["Count"])
getPercNull(nulls_df, vehicles)

display(HTML(nulls_df.to_html()))
        
print "Total Records : " , len(vehicles)


Count perc_null
age 11723 0.176626
sex 14567 0.219475
occupant_num 1221 0.018396
rgst_wgt 31086 0.468360
cit_ind 14349 0.216191
drvr_lic_st 21012 0.316579
veh_lic_st 14218 0.214217
hazmat_plac_ind 41529 0.625701
tow_ind 4419 0.066579
Total Records :  66372

Determine Priority Columns


In [10]:
priority_cols_vehicles = [
    'case_yr', 'rgst_typ', 'body_typ', 'veh_typ','pre_accd_actn', 'age', 'sex', 'rgst_wgt'
]

In [11]:
#Join Crashes(just injuries and Fatalities) & Vehicles
crash_short = crashes[['case_num','crashid', 'num_of_fat', 'num_of_inj']]
merge_Vehicles = pd.merge(vehicles, crash_short, on='crashid')
grouped_by_Case_merge_vehicles = merge_Vehicles.groupby('crashid')

In [12]:
test = merge_Vehicles[['crashid','num_of_fat','num_of_inj']].groupby('crashid').sum()
# test.head()
merge_Vehicles.head()


Out[12]:
case_num_x case_yr veh_seq_num rgst_typ body_typ veh_typ pre_accd_actn second_event veh_dirn_of_trav haz_cargo_ind ... cit_ind drvr_lic_st veh_lic_st hazmat_plac_ind tow_ind crashid tck_bus_clsf case_num_y num_of_fat num_of_inj
0 1103203 2001 1 ZZ 32 0 01 ZZ 3 N ... NaN NaN NaN NaN NaN 11032032001 ZZ 1103203 0 1
1 1103203 2001 2 ZZ 36 6 ZZ ZZ Z N ... NaN NaN NaN NaN NaN 11032032001 ZZ 1103203 0 1
2 1103232 2001 1 16 13 2 01 ZZ 1 N ... NaN NaN NaN NaN NaN 11032322001 ZZ 1103232 0 0
3 1103232 2001 2 16 68 2 03 ZZ 5 N ... NaN NaN NaN NaN NaN 11032322001 ZZ 1103232 0 0
4 1103241 2001 3 54 13 2 07 ZZ 1 N ... NaN NaN NaN NaN NaN 11032412001 ZZ 1103241 0 1

5 rows × 26 columns

Vehicles Dataset Summary

Note: There is double counting present in the sum results in tables below, as each row in the vehicles table represents a party in the accident (vehicles, ped or bike). Data is just to provide an idea of the distribution of value for different fields. Injuries/Fatalities are not mapped to specific people/vehicles. I.E. If a crash occured and we know there was a bike and a car and we know the age/sex/etc of the two people involved (driver / rider) we do not know which person was injured/killed.


In [13]:
summarize(priority_cols_vehicles, merge_Vehicles, include_sums=True)


>>>>> START <<<<<
>>>>>>>>>>>>>>>>>>>>
CASE_YR
num_of_inj crashid num_of_fat
sum count sum
case_yr
2001 8304 6943 18
2002 7715 5744 14
2003 6569 4951 11
2004 5507 4429 20
2005 5103 4068 9
2006 4969 4410 14
2007 4720 4839 30
2008 4609 4807 18
2009 4929 5007 12
2010 4449 4479 17
2011 4941 4525 7
2012 3627 3763 4
2013 4369 4237 20
2014 4189 4170 15
>>>>>>>>>>>>>>>>>>>>
RGST_TYP
num_of_inj crashid num_of_fat
sum count sum
rgst_typ
11 592 577 1
12 16 24 0
15 1 1 0
16 34899 30082 51
19 174 119 0
20 1 1 0
21 2 2 0
26 25 21 0
27 1 1 0
29 78 109 0
33 2 4 0
36 630 591 9
37 17 18 0
38 18 18 0
39 6 1 0
40 1 1 0
41 3 2 0
44 0 1 0
45 2 4 0
48 12 13 0
51 100 84 0
52 478 374 0
53 9 4 0
54 5970 4517 3
55 631 484 3
56 304 210 1
58 1 1 0
61 16 20 0
62 15 11 0
66 8 5 0
67 36 29 0
68 38 46 0
69 93 96 0
70 239 253 8
72 324 354 1
76 2027 1933 7
77 13 11 0
79 0 1 0
80 111 94 0
81 35 42 1
84 1 2 0
85 21 20 0
86 2 4 0
88 1019 898 4
XX 24125 23489 112
ZZ 1904 1800 8
>>>>>>>>>>>>>>>>>>>>
BODY_TYP
num_of_inj crashid num_of_fat
sum count sum
body_typ
8 3 3 0
9 1 1 0
10 3 2 0
11 11 6 0
12 203 194 0
13 252 238 0
14 13 14 0
15 1 1 0
19 14 15 0
22 1 1 0
30 13 14 1
31 0 1 0
32 97 128 0
35 41 41 0
36 97 88 1
37 1 1 0
39 1 1 0
41 2 2 0
44 0 1 0
58 0 2 0
60 4 5 0
61 3 6 0
63 10 10 0
64 1 1 0
66 2 3 0
67 2 3 0
68 29 25 0
90 7 7 0
93 21 20 0
96 2 2 0
08 24 25 0
09 8 9 0
10 179 192 1
11 698 665 0
12 16095 14023 35
13 28839 23827 41
14 3019 2536 4
15 7 14 0
19 749 718 16
20 1 1 0
21 0 1 0
22 5 8 0
23 0 2 0
30 833 995 3
31 729 590 0
32 4621 6280 8
33 18 18 0
34 2 1 0
35 2540 2469 11
36 6083 5343 56
37 86 76 0
38 1 1 0
39 76 69 0
41 22 22 0
43 0 1 0
44 24 30 1
45 6 8 1
46 0 5 0
50 3 2 0
51 3 4 0
52 20 23 0
53 1 1 0
56 2 1 0
57 0 1 0
58 375 451 8
59 8 4 0
60 345 338 0
61 244 363 4
62 63 86 2
63 634 635 2
64 20 19 0
65 43 43 0
66 71 72 1
67 84 78 0
68 2723 2450 6
70 193 206 3
8 657 379 0
80 1 2 0
81 0 1 0
83 25 25 0
85 12 14 0
87 1 2 0
9 110 116 0
90 1124 867 3
91 38 30 0
92 1 1 0
93 1594 1292 1
95 8 10 0
96 32 27 0
?? 65 64 0
>>>>>>>>>>>>>>>>>>>>
VEH_TYP
num_of_inj crashid num_of_fat
sum count sum
veh_typ
0 7569 8677 10
1 763 733 16
2 53437 45408 89
3 2339 2739 23
4 1131 874 3
5 2581 2510 11
6 6180 5431 57
>>>>>>>>>>>>>>>>>>>>
PRE_ACCD_ACTN
num_of_inj crashid num_of_fat
sum count sum
pre_accd_actn
01 34865 27418 83
02 2444 2628 12
03 6174 5209 14
04 712 625 0
05 489 617 0
06 464 377 1
07 2815 2203 1
08 4449 3424 0
09 259 371 0
10 3642 4895 26
11 156 174 0
12 1039 1135 3
13 426 568 4
14 443 406 2
15 892 1242 0
16 42 41 0
17 91 77 0
18 26 15 0
20 995 1002 3
XX 753 761 6
YY 5190 4544 46
ZZ 7634 8640 8
>>>>>>>>>>>>>>>>>>>>
AGE
num_of_inj crashid num_of_fat
sum count sum
age
1 64 32 0
2 49 35 0
3 43 27 0
4 42 31 3
5 44 25 0
6 36 31 0
7 60 42 0
8 64 46 1
9 62 53 2
10 67 63 0
11 94 92 2
12 121 112 3
13 111 102 0
14 112 104 2
15 114 100 1
16 131 113 0
17 240 218 1
18 555 411 3
19 772 591 1
20 880 684 2
21 1094 864 0
22 1350 1080 0
23 1483 1157 4
24 1652 1281 6
25 1770 1396 1
26 1780 1440 2
27 1837 1421 3
28 1749 1416 6
29 1768 1431 3
30 1879 1499 3
31 1723 1453 2
32 1821 1523 4
33 1878 1446 1
34 1739 1414 3
35 1866 1494 5
36 1653 1396 4
37 1633 1369 6
38 1738 1384 9
39 1642 1364 2
40 1568 1304 6
41 1504 1259 3
42 1508 1288 3
43 1551 1320 5
44 1491 1286 5
45 1463 1202 2
46 1451 1207 3
47 1341 1146 2
48 1250 1080 3
49 1189 1083 4
50 1185 1031 4
51 1053 940 0
52 1113 986 2
53 1003 884 1
54 1005 920 1
55 902 798 1
56 883 755 2
57 785 694 1
58 759 670 5
59 706 613 1
60 639 562 2
61 606 522 1
62 472 437 2
63 390 402 3
64 381 357 0
65 345 324 2
66 319 311 1
67 276 263 0
68 259 263 0
69 229 220 3
70 204 183 2
71 166 164 1
72 136 135 2
73 116 135 1
74 129 129 0
75 130 131 2
76 95 96 1
77 97 99 2
78 68 67 2
79 68 66 1
80 55 57 0
81 46 49 0
82 50 55 0
83 47 45 1
84 31 38 0
85 28 27 0
86 20 28 2
87 16 15 0
88 5 4 0
89 7 9 1
90 6 5 0
91 7 7 1
92 1 2 0
93 3 3 0
95 2 3 0
96 0 1 0
97 1 1 0
98 2 2 0
99 1 1 0
100 2 1 0
101 3 2 0
102 37 25 1
103 39 34 0
104 50 36 0
105 43 33 0
106 45 44 0
107 21 26 0
108 36 24 0
>>>>>>>>>>>>>>>>>>>>
SEX
num_of_inj crashid num_of_fat
sum count sum
sex
F 17192 14472 35
M 44162 37077 126
U 28 29 0
f 24 41 0
m 138 185 0
u 1 1 0
>>>>>>>>>>>>>>>>>>>>
RGST_WGT
num_of_inj crashid num_of_fat
sum count sum
rgst_wgt
0 1 1 0
1 1 2 0
4 35 26 0
5 342 264 0
6 1 2 0
7 12 12 0
8 16 4 0
9 1 1 0
10 4 4 0
11 2 3 0
12 1 1 0
14 12 11 0
16 0 1 0
20 1 1 0
34 17 10 0
35 1 1 0
36 16 16 0
37 25 14 0
40 6 6 0
41 0 1 0
42 12 1 0
43 19 10 0
45 10 5 0
49 1 1 0
53 1 1 0
55 1 1 0
56 7 4 0
57 3 3 0
60 3 2 0
61 1 1 0
143 1 1 0
172 2 1 0
179 2 2 0
200 1 1 0
205 13 14 0
209 2 1 0
210 2 2 0
213 2 1 0
215 1 2 0
220 4 4 0
221 1 1 0
224 2 2 0
225 5 11 1
229 1 1 0
230 3 3 0
231 1 1 0
233 1 1 0
240 3 3 0
243 18 17 0
251 12 11 0
254 1 1 0
256 1 1 0
258 1 2 0
260 1 1 0
261 1 1 0
262 2 2 0
267 1 1 0
268 1 1 0
275 1 1 0
277 1 1 0
290 1 1 0
291 4 3 0
295 2 2 0
300 3 3 0
304 7 7 0
306 1 1 0
311 2 2 0
320 1 1 0
321 3 6 0
322 1 1 0
324 4 3 0
326 18 17 0
328 6 7 0
330 1 1 0
335 2 1 0
337 10 9 0
342 3 2 0
348 1 1 0
350 3 3 0
352 1 1 0
353 1 1 0
354 10 6 0
355 10 9 0
357 1 1 0
359 15 12 0
360 5 7 1
362 5 4 0
363 6 1 0
365 24 15 0
366 6 2 0
367 2 3 1
368 5 5 0
369 1 1 0
370 19 18 0
372 9 9 0
373 2 2 0
374 5 3 1
375 10 10 0
377 3 3 0
378 1 1 0
379 11 9 0
380 1 1 0
381 2 2 0
383 5 5 0
384 1 1 0
385 2 2 0
386 4 3 0
388 2 2 0
389 0 1 0
390 6 7 1
392 3 2 0
394 3 3 0
395 1 1 0
396 5 4 0
397 1 1 0
400 6 5 0
401 4 2 0
404 4 4 0
405 3 3 0
407 4 4 0
408 7 5 0
410 4 5 0
412 3 2 0
414 4 5 0
416 1 2 1
417 3 2 0
418 1 2 0
419 0 1 0
420 3 3 0
421 2 3 0
422 2 2 0
423 2 2 0
424 2 1 0
425 5 5 0
428 2 1 0
430 1 1 0
432 2 2 0
434 1 1 0
437 5 5 0
438 1 1 0
440 2 2 0
443 1 1 0
444 1 2 0
445 3 3 0
447 1 2 0
448 3 3 0
450 2 3 1
452 3 3 0
454 3 3 0
456 1 2 0
457 1 1 0
458 4 3 0
460 1 1 0
461 3 2 0
463 2 5 0
464 0 1 0
465 4 4 0
467 3 2 0
470 1 1 0
471 3 2 0
473 5 6 0
474 2 2 0
475 1 1 0
478 4 3 0
479 4 2 0
480 9 9 0
483 4 3 0
484 1 1 0
485 2 2 0
486 2 2 0
489 3 3 1
490 2 2 0
491 2 3 0
493 1 1 0
494 1 1 0
496 2 2 0
497 1 1 0
500 3 3 0
501 1 1 0
504 1 1 0
505 3 3 0
506 1 1 0
508 2 1 0
509 2 2 0
512 1 1 0
514 4 2 0
516 1 1 0
518 2 3 0
520 2 2 0
524 1 1 0
525 1 1 0
526 1 1 0
531 1 1 0
533 2 1 0
534 1 1 0
535 5 2 0
536 1 1 0
539 2 3 0
540 1 1 0
544 0 1 0
545 3 3 0
548 1 2 0
549 1 1 0
550 2 3 0
551 1 1 0
554 1 1 0
555 1 1 0
556 1 1 0
558 1 1 0
559 2 2 0
560 1 1 0
562 2 2 0
563 3 3 0
565 1 1 0
567 2 2 0
573 1 1 0
574 1 1 0
575 1 1 0
576 1 1 0
578 0 1 1
590 2 3 0
593 1 1 0
595 0 1 0
598 1 1 0
600 3 3 0
601 1 1 0
602 1 1 0
606 1 1 0
612 1 1 0
613 2 2 0
619 1 1 0
622 3 3 0
630 1 2 0
633 1 1 0
634 3 3 0
640 2 1 0
641 1 1 0
642 2 1 0
644 1 1 0
645 2 2 0
651 1 1 0
652 1 1 0
660 1 1 0
661 1 1 0
668 1 1 0
672 1 1 0
692 1 1 0
694 1 1 0
695 3 3 0
699 2 1 0
700 1 1 0
705 1 1 0
709 0 1 0
710 10 4 0
717 1 1 0
721 1 1 0
731 2 2 0
732 1 1 0
735 0 1 0
745 1 1 0
758 1 1 0
772 3 2 0
804 2 1 0
822 1 1 0
841 1 1 0
950 1 1 0
1180 1 1 0
1452 2 2 0
1642 3 2 0
1665 2 2 0
1692 2 1 0
1698 1 1 0
1700 0 1 0
1701 1 1 0
1761 2 1 0
1762 1 1 0
1816 1 1 0
1831 1 1 0
1834 1 1 0
1850 2 2 0
1852 1 1 0
1876 2 1 0
1889 8 5 0
1890 5 3 0
1894 1 1 0
1900 2 1 0
1905 2 1 0
1911 1 1 0
1915 1 1 0
1927 1 1 0
1933 1 1 0
1935 3 1 0
1938 3 2 0
1939 2 1 0
1940 1 2 0
1944 3 1 0
1949 3 2 0
1950 1 2 0
1955 2 1 0
1960 0 1 0
1962 1 1 0
1965 3 2 0
1967 4 1 0
1969 4 1 0
1970 1 1 0
1975 0 1 0
1980 2 1 0
1989 1 1 0
1994 11 6 0
1995 3 2 0
1997 0 1 0
2000 5 5 0
2002 1 1 0
2003 1 1 0
2004 4 1 0
2009 12 9 0
2010 4 3 0
2011 2 1 0
2012 4 2 0
2019 18 14 0
2020 5 3 0
2022 1 1 0
2024 9 6 0
2025 2 1 0
2030 3 2 0
2034 1 1 0
2038 3 1 0
2040 7 3 0
2041 1 1 0
2042 1 1 0
2044 15 8 0
2050 3 4 0
2053 3 1 0
2057 0 1 0
2059 1 1 0
2061 2 1 0
2065 4 3 0
2070 4 4 0
2072 6 4 0
2074 5 4 0
2075 0 1 0
2078 0 1 0
2082 0 1 0
2083 4 4 0
2085 0 1 0
2087 1 1 0
2088 3 2 0
2093 1 2 0
2095 2 2 0
2099 4 3 0
2100 4 3 0
2101 12 5 0
2103 3 3 0
2105 1 1 0
2106 1 1 0
2108 2 2 0
2109 3 5 0
2110 9 5 0
2114 0 1 0
2118 0 1 0
2120 4 2 0
2121 0 1 0
2122 2 2 0
2127 6 3 0
2134 2 1 0
2135 2 1 0
2136 1 1 0
2137 0 1 0
2138 2 2 0
2139 1 1 0
2140 2 2 0
2142 4 1 0
2145 4 3 0
2147 12 12 0
2150 4 3 0
2153 2 2 0
2154 2 1 0
2156 3 3 0
2158 3 3 0
2160 2 2 0
2161 2 1 0
2162 2 2 0
2163 2 1 0
2165 1 1 0
2167 10 5 0
2168 1 2 0
2169 1 2 0
2170 0 1 0
2171 0 1 0
2172 3 1 0
2174 1 2 0
2175 3 3 0
2176 13 12 0
2178 1 2 0
2179 6 6 0
2180 9 3 0
2183 12 11 0
2184 1 2 0
2185 18 8 0
2187 1 2 0
2189 1 2 0
2191 1 1 0
2197 0 1 0
2198 3 1 0
2200 7 8 0
2201 2 1 0
2204 3 2 0
2205 7 4 0
2206 3 2 0
2207 11 9 0
2208 3 3 0
2209 2 1 0
2210 1 2 0
2211 9 3 0
2213 4 3 0
2216 1 2 0
2218 39 37 0
2219 0 1 0
2220 2 1 0
2222 11 6 0
2227 5 3 0
2229 5 3 0
2230 1 1 0
2231 2 1 0
2233 6 7 0
2234 0 1 0
2235 1 1 0
2236 1 1 0
2238 6 6 0
2239 4 4 0
2240 2 1 0
2241 1 1 0
2242 7 7 0
2243 3 5 0
2244 1 2 0
2245 1 2 0
2246 9 6 0
2247 4 4 0
2248 1 1 0
2249 2 3 0
2250 8 5 0
2251 9 4 0
2252 3 2 0
2253 7 3 0
2254 28 29 0
2255 5 4 0
2256 6 3 0
2257 13 3 0
2258 3 5 0
2259 1 1 0
2260 4 2 0
2261 4 3 0
2262 5 2 0
2263 2 2 0
2264 1 1 0
2266 26 10 0
2267 2 2 0
2268 4 3 0
2269 1 2 0
2270 8 8 0
2271 26 14 0
2272 17 14 0
2273 3 4 0
2274 2 1 0
2275 13 7 0
2276 1 1 0
2277 21 19 0
2280 1 1 0
2281 0 2 0
2282 21 15 0
2283 2 1 0
2284 0 1 0
2285 2 1 0
2286 13 14 0
2287 1 1 0
2288 39 28 0
2289 18 13 0
2290 8 7 0
2291 2 2 0
2292 0 1 0
2293 6 7 0
2294 2 2 0
2295 4 5 0
2296 1 2 0
2297 6 5 0
2298 11 6 0
2299 3 4 0
2300 7 6 0
2301 16 15 0
2304 16 13 0
2305 1 1 0
2306 2 2 0
2307 1 1 0
2308 5 6 0
2309 3 4 0
2310 16 9 0
2311 24 15 0
2312 3 3 0
2313 4 3 0
2314 0 2 0
2315 13 8 0
2316 5 4 0
2317 7 6 0
2318 5 2 0
2319 4 4 0
2320 7 4 0
2321 15 11 0
2323 12 7 0
2324 11 7 0
2325 5 4 0
2326 25 20 0
2328 12 5 0
2329 7 2 0
2330 16 9 0
2331 0 1 0
2333 29 26 1
2334 7 3 0
2335 5 4 0
2336 3 2 0
2337 49 33 0
2338 0 1 0
2339 5 5 0
2340 3 4 0
2341 4 1 0
2343 5 5 0
2344 5 6 0
2345 8 4 0
2346 3 4 0
2347 2 1 0
2348 19 12 0
2350 18 19 1
2352 6 6 0
2353 7 6 0
2354 21 16 0
2355 30 26 0
2356 12 14 0
2358 4 6 0
2359 19 13 0
2360 4 4 0
2361 3 5 1
2363 4 3 0
2364 4 5 0
2365 2 2 0
2366 2 3 0
2367 3 3 0
2368 7 3 0
2369 0 1 0
2370 7 7 0
2371 1 1 0
2372 2 2 0
2373 10 7 0
2374 11 8 0
2375 5 4 0
2376 24 19 0
2377 17 12 0
2378 1 1 0
2379 8 6 0
2380 16 9 0
2381 11 9 0
2382 6 5 0
2383 2 3 0
2384 18 16 0
2385 10 12 0
2386 3 2 0
2387 12 6 0
2388 92 66 0
2389 7 4 0
2390 19 11 0
2391 0 1 0
2392 12 10 0
2393 11 14 0
2394 23 26 0
2395 5 6 0
2396 17 21 0
2397 1 2 0
2398 7 6 0
2399 30 23 0
2400 29 22 0
2401 10 9 0
2402 3 3 0
2403 12 14 0
2404 5 5 0
2405 13 13 0
2406 6 5 0
2407 15 13 0
2408 1 2 0
2409 12 11 0
2410 35 25 0
2411 38 25 0
2412 8 5 0
2413 2 2 0
2414 16 9 0
2415 25 22 0
2416 16 8 0
2417 3 3 0
2418 43 34 0
2419 13 13 0
2420 11 9 0
2421 4 4 0
2422 11 14 0
2423 16 6 0
2424 2 2 0
2425 20 15 0
2426 1 4 0
2427 0 1 0
2428 3 2 0
2429 57 37 1
2430 1 3 0
2431 10 4 0
2432 44 40 0
2433 4 4 0
2434 16 17 0
2435 2 1 0
2436 7 8 0
2437 9 8 0
2438 6 4 0
2439 7 3 0
2440 14 6 0
2441 0 1 0
2442 12 7 0
2443 10 11 0
2444 6 8 0
2445 34 40 0
2446 1 1 0
2447 12 5 0
2448 27 22 0
2449 51 52 0
2450 20 14 0
2451 8 7 0
2452 3 1 0
2453 1 2 0
2454 49 45 0
2455 4 3 0
2456 12 8 0
2458 27 21 0
2459 11 9 0
2460 14 11 0
2461 1 1 0
2462 1 1 0
2463 11 6 0
2464 2 1 0
2465 14 14 0
2466 1 1 0
2467 9 4 0
2468 9 5 0
2469 4 6 0
2470 14 9 0
2472 7 6 0
2474 1 1 0
2475 6 7 0
2476 9 4 0
2477 7 2 0
2478 6 7 0
2479 3 2 0
2480 15 13 0
2481 1 2 0
2482 8 11 0
2483 33 26 0
2484 6 6 0
2485 9 7 0
2487 12 11 0
2489 21 17 0
2490 15 10 0
2491 17 13 0
2493 10 14 0
2494 4 3 0
2495 10 9 0
2496 3 4 0
2497 16 18 0
2498 21 22 0
2499 0 2 0
2500 60 48 0
2501 5 5 0
2502 20 23 0
2503 9 10 0
2504 16 17 0
2505 3 3 0
2507 0 1 0
2508 11 14 0
2509 8 9 0
2510 29 19 0
2511 35 29 0
2512 2 2 0
2513 23 16 0
2515 2 2 0
2516 0 1 0
2517 4 3 0
2518 1 1 0
2519 81 72 0
2520 11 7 0
2522 0 1 0
2523 2 1 0
2524 12 18 0
2525 15 9 0
2526 2 1 0
2527 0 1 0
2528 13 11 0
2529 4 3 0
2530 11 8 0
2531 10 8 0
2532 3 2 0
2533 22 16 0
2534 1 1 0
2535 11 9 0
2536 4 3 0
2537 24 13 0
2538 1 2 0
2539 7 2 0
2540 12 14 0
2541 0 1 0
2542 27 26 1
2543 13 8 0
2544 58 56 0
2545 1 1 0
2546 43 37 0
2547 27 22 0
2548 33 25 0
2549 39 47 0
2550 21 15 0
2551 8 8 0
2553 2 2 0
2554 5 5 0
2555 14 12 0
2556 8 12 0
2557 7 9 0
2558 11 6 0
2560 18 17 0
2561 2 1 0
2562 10 7 0
2563 8 5 0
2564 14 13 1
2565 1 2 0
2566 4 3 0
2567 8 4 0
2568 12 11 0
2569 6 4 0
2570 5 4 0
2572 6 4 0
2573 11 6 0
2574 17 13 0
2575 9 10 0
2576 10 3 0
2577 7 8 0
2578 6 9 0
2579 11 7 0
2580 2 4 0
2581 3 4 0
2582 11 8 0
2584 5 5 0
2585 10 10 0
2586 8 7 0
2587 7 4 0
2588 13 10 0
2589 5 3 0
2590 3 3 0
2591 2 2 0
2592 1 2 0
2593 18 14 0
2595 22 10 0
2596 7 10 0
2597 8 6 0
2598 17 8 0
2599 1 2 0
2600 20 18 0
2601 6 5 0
2602 1 3 0
2603 5 6 0
2604 25 22 0
2605 5 4 0
2606 14 11 0
2607 2 1 0
2608 8 4 0
2609 8 8 0
2610 26 21 0
2611 6 9 0
2612 6 9 0
2613 1 1 0
2614 14 10 0
2615 30 19 0
2616 2 1 0
2617 13 9 0
2618 1 1 0
2619 3 3 0
2620 3 5 0
2621 4 4 0
2623 54 56 0
2624 5 4 0
2625 6 5 0
2626 37 29 0
2627 13 18 0
2628 5 4 0
2629 9 14 0
2630 5 6 0
2632 7 7 0
2634 18 22 0
2635 13 13 0
2636 1 2 0
2637 8 6 0
2638 8 4 0
2639 14 9 0
2640 4 3 0
2641 18 15 0
2642 6 4 0
2643 4 3 0
2644 5 1 0
2645 4 4 0
2646 9 5 0
2647 5 5 0
2648 16 10 0
2649 12 13 0
2650 11 11 0
2651 1 1 0
2654 9 6 0
2655 8 3 0
2656 1 1 0
2657 9 10 0
2658 1 1 0
2659 23 18 0
2660 5 3 0
2661 16 16 0
2662 5 6 0
2663 3 9 0
2664 7 8 0
2665 17 7 0
2666 3 3 0
2667 4 7 0
2668 29 29 0
2669 10 6 0
2670 9 5 0
2671 10 6 0
2672 2 3 0
2673 3 2 0
2674 26 15 0
2675 2 3 0
2676 7 8 0
2677 1 2 0
2678 4 3 0
2679 12 11 0
2680 9 8 0
2681 11 9 0
2682 1 2 0
2683 28 34 0
2684 4 2 0
2685 7 9 0
2686 12 11 0
2687 75 84 0
2688 11 7 0
2689 2 3 0
2690 72 70 0
2692 3 1 0
2694 6 6 0
2695 9 8 0
2696 15 13 0
2697 2 2 0
2698 80 68 0
2699 21 16 0
2700 31 21 0
2701 24 28 0
2702 7 5 0
2703 144 108 0
2704 14 6 0
2705 16 17 0
2706 6 5 0
2707 35 22 0
2708 4 7 0
2709 3 3 0
2710 13 10 0
2711 17 10 0
2712 6 4 0
2713 0 1 0
2714 2 3 0
2715 5 1 0
2716 8 4 0
2717 2 4 0
2718 6 5 0
2720 9 8 0
2721 2 3 0
2722 9 4 0
2723 16 13 0
2724 1 1 0
2725 90 49 0
2726 5 4 0
2727 20 16 0
2728 5 8 0
2729 25 21 0
2730 6 7 0
2732 5 8 0
2733 1 1 0
2734 26 16 0
2735 6 5 0
2736 5 2 0
2737 5 3 0
2738 24 15 0
2739 0 1 0
2740 21 25 0
2741 4 1 0
2742 6 6 0
2743 23 17 0
2744 3 7 0
2745 37 24 0
2746 3 3 0
2747 10 8 0
2748 0 1 0
2749 24 9 0
2750 22 13 0
2751 7 6 0
2752 3 5 0
2753 1 2 0
2754 3 2 0
2755 16 7 0
2756 18 19 0
2757 5 2 0
2758 40 32 0
2759 7 3 0
2760 5 4 0
2761 13 3 0
2762 9 6 0
2763 5 5 0
2764 6 6 0
2765 17 12 0
2766 1 3 0
2767 25 23 0
2768 3 1 0
2769 17 18 0
2770 4 3 0
2771 2 5 0
2772 41 30 0
2773 15 8 0
2774 5 6 0
2775 9 5 0
2776 24 20 0
2777 3 3 0
2778 30 24 0
2779 3 3 0
2780 25 24 0
2781 7 3 0
2782 1 1 0
2783 4 2 0
2784 12 8 0
2785 7 5 0
2786 4 3 0
2787 15 11 0
2788 14 8 0
2789 20 19 0
2790 17 11 0
2791 8 5 0
2792 10 4 0
2793 3 10 0
2794 10 7 0
2795 0 1 0
2796 9 6 0
2797 5 7 0
2798 11 10 0
2799 11 7 0
2800 32 32 0
2801 7 4 0
2802 6 2 0
2803 3 1 0
2804 8 8 0
2805 1 6 0
2806 13 9 0
2808 4 3 0
2809 21 10 0
2810 13 9 0
2811 28 25 0
2812 1 2 0
2813 4 6 0
2814 9 8 0
2815 18 19 0
2816 15 14 0
2817 3 4 0
2818 12 13 0
2819 3 4 0
2820 12 13 1
2821 2 2 0
2822 106 78 0
2823 2 4 0
2824 57 35 0
2825 17 10 0
2826 18 15 0
2827 3 3 0
2828 18 16 0
2829 5 5 0
2830 63 54 0
2831 3 2 0
2832 3 3 0
2833 2 7 0
2834 35 32 0
2835 13 13 0
2836 5 3 0
2837 16 15 0
2838 9 12 0
2839 1 1 0
2840 16 9 0
2841 1 1 0
2842 3 2 0
2843 10 10 0
2844 5 3 0
2845 5 5 0
2846 8 6 0
2847 6 11 0
2848 2 3 0
2850 7 9 0
2851 8 7 0
2852 8 8 0
2853 6 5 0
2854 23 12 0
2855 12 13 0
2856 6 5 0
2857 9 6 0
2858 4 4 0
2859 30 16 0
2860 9 9 0
2861 3 4 0
2862 5 5 0
2863 6 4 0
2864 123 100 0
2865 13 8 1
2866 31 27 0
2867 4 3 0
2868 3 3 0
2869 2 1 0
2870 27 35 0
2871 6 9 0
2872 22 11 0
2873 11 12 0
2874 17 15 0
2875 152 119 0
2876 1 1 0
2877 22 26 0
2878 20 19 0
2879 7 3 0
2880 3 5 0
2881 1 4 0
2882 7 6 0
2883 20 7 0
2884 30 25 0
2885 5 4 0
2886 53 30 0
2888 18 15 0
2889 6 4 0
2890 23 20 0
2891 3 4 0
2892 42 33 0
2893 9 5 0
2894 2 2 0
2895 71 62 0
2896 47 35 0
2897 9 7 0
2898 18 14 0
2899 18 18 0
2900 25 21 0
2901 5 7 0
2902 7 10 0
2903 1 3 0
2904 19 19 0
2905 47 34 0
2906 19 18 0
2907 9 5 0
2908 33 35 0
2909 11 9 0
2910 32 29 1
2911 22 20 0
2912 17 13 0
2913 8 7 0
2914 1 1 0
2915 7 9 0
2916 5 7 0
2917 0 2 0
2918 23 17 0
2919 36 28 0
2920 10 11 0
2921 20 13 0
2922 6 8 0
2923 21 17 0
2924 13 9 0
2925 8 11 0
2926 53 37 0
2927 6 3 0
2928 12 10 0
2929 4 4 0
2930 59 64 0
2931 6 5 0
2932 26 19 0
2933 4 4 0
2934 15 12 0
2935 10 9 0
2936 0 2 0
2937 9 6 0
2938 5 3 0
2939 2 2 0
2940 2 3 0
2941 5 7 0
2942 9 6 0
2943 154 107 0
2944 30 21 0
2945 9 8 0
2947 27 21 0
2948 84 56 0
2949 19 21 0
2950 53 37 0
2952 110 99 0
2953 7 5 0
2954 13 12 0
2955 3 4 0
2956 2 2 0
2957 46 37 0
2958 36 29 0
2959 6 9 0
2960 38 35 0
2961 36 29 0
2962 65 51 0
2963 18 12 0
2964 7 8 0
2965 43 36 0
2966 11 11 0
2967 10 10 0
2968 5 4 1
2969 3 3 0
2970 65 39 0
2971 6 4 0
2972 13 10 0
2973 4 4 0
2974 89 69 0
2975 16 11 0
2976 40 25 0
2977 2 4 0
2978 6 11 0
2979 21 17 0
2980 21 24 0
2981 9 8 0
2982 186 168 0
2983 9 9 0
2984 1 3 0
2985 61 60 0
2986 13 9 0
2987 40 20 0
2988 7 5 0
2989 1 2 0
2990 15 12 0
2991 0 2 0
2992 7 2 0
2993 7 6 0
2994 5 6 0
2995 39 44 0
2996 52 37 0
2997 11 7 0
2998 32 30 0
2999 6 7 0
3000 94 77 1
3001 7 11 0
3002 25 20 0
3003 48 29 1
3004 7 5 0
3005 12 9 0
3006 4 8 0
3007 5 4 0
3008 8 14 0
3009 20 16 0
3010 33 31 0
3011 45 33 0
3012 52 40 0
3013 1 5 0
3014 12 12 1
3015 9 7 0
3016 8 8 0
3017 2 1 0
3018 12 10 0
3019 37 27 0
3020 49 44 0
3021 8 9 0
3022 4 5 0
3023 12 11 0
3024 41 25 0
3025 39 38 0
3026 13 7 0
3027 108 90 0
3028 146 125 0
3029 20 15 0
3030 11 7 0
3031 10 14 0
3032 40 31 0
3033 3 5 0
3034 7 8 0
3035 11 8 0
3036 9 9 0
3037 25 19 0
3038 20 18 0
3039 28 21 0
3040 23 21 0
3041 35 29 0
3042 15 12 0
3043 2 2 0
3044 7 5 0
3045 18 15 0
3046 37 34 0
3047 52 33 0
3048 7 7 0
3049 157 145 2
3050 29 26 0
3051 25 25 0
3052 2 4 0
3053 142 103 2
3054 3 4 0
3055 23 16 1
3056 15 12 0
3057 6 3 0
3058 15 10 0
3059 4 4 0
3060 11 12 0
3061 13 10 0
3062 6 7 0
3063 53 42 0
3064 17 12 0
3065 44 47 1
3066 19 16 0
3067 37 27 0
3068 13 19 0
3069 30 30 0
3070 9 6 0
3071 10 13 0
3072 122 85 0
3073 6 8 0
3074 26 24 0
3075 116 100 0
3076 70 60 0
3077 8 7 0
3078 24 18 0
3079 3 3 0
3080 24 23 0
3081 2 2 0
3082 6 7 0
3083 12 8 0
3084 7 8 0
3085 33 31 0
3086 92 64 0
3087 18 17 0
3088 7 5 0
3089 63 52 0
3090 24 18 0
3091 4 8 0
3092 3 3 0
3093 12 10 0
3094 5 4 0
3095 23 24 0
3096 8 9 0
3097 36 26 0
3098 13 16 0
3099 13 8 0
3100 58 50 0
3101 16 13 0
3102 34 31 0
3104 18 13 0
3105 5 7 0
3106 34 21 0
3107 7 5 0
3108 8 10 0
3109 30 35 0
3110 44 34 0
3111 20 25 0
3112 12 7 0
3113 10 6 0
3115 33 30 0
3116 20 14 0
3117 16 9 0
3118 27 28 0
3119 16 15 0
3120 94 97 0
3121 4 4 0
3122 12 10 0
3123 6 5 0
3124 3 5 0
3125 14 10 0
3126 33 27 0
3127 4 5 0
3129 41 28 0
3130 73 64 0
3131 15 20 0
3133 11 12 0
3134 6 3 0
3135 22 23 0
3136 6 5 0
3137 23 21 0
3138 16 9 0
3139 65 45 0
3140 39 50 0
3141 3 4 0
3142 25 22 0
3143 1 1 0
3144 3 4 0
3145 6 6 0
3146 32 34 0
3147 9 6 0
3148 36 29 0
3149 12 12 0
3150 29 21 0
3151 25 19 0
3152 1 4 0
3153 30 23 0
3154 2 4 0
3155 37 39 0
3156 0 1 0
3157 4 2 0
3158 14 10 0
3159 32 39 0
3160 38 27 0
3161 3 4 0
3162 15 16 0
3163 6 5 0
3164 27 29 0
3165 24 26 0
3166 22 24 1
3167 5 3 0
3168 16 14 0
3169 11 9 0
3170 21 10 0
3171 13 11 0
3172 18 12 0
3173 37 31 0
3174 25 22 0
3175 47 32 0
3176 7 7 0
3177 31 26 0
3178 3 4 0
3179 48 47 0
3180 23 24 0
3181 28 24 0
3182 27 25 0
3183 38 28 0
3184 67 51 1
3185 19 21 0
3186 44 32 0
3187 29 23 0
3188 10 14 0
3189 3 4 0
3190 14 12 0
3191 14 13 0
3192 4 6 0
3193 44 40 0
3194 25 25 0
3195 36 39 0
3196 13 10 1
3197 22 21 0
3198 20 15 0
3199 42 31 0
3200 92 76 0
3201 20 14 0
3202 44 34 0
3203 30 31 0
3204 2 3 0
3205 15 15 0
3206 16 17 0
3207 2 3 0
3208 121 119 0
3209 92 105 0
3210 48 29 0
3211 50 47 0
3212 22 20 0
3213 43 29 0
3214 13 16 0
3215 17 9 0
3216 42 36 0
3217 55 48 0
3218 18 15 0
3219 34 28 0
3220 23 30 0
3221 8 3 0
3222 10 12 0
3223 8 11 0
3224 8 6 0
3225 36 25 0
3226 8 6 0
3227 32 17 0
3228 53 47 0
3229 1 3 0
3230 33 41 0
3231 33 35 0
3232 48 35 1
3233 5 2 0
3234 19 17 0
3235 5 5 0
3236 35 37 0
3237 12 11 0
3238 8 7 0
3239 17 13 0
3240 39 26 0
3241 26 19 0
3242 6 2 0
3243 24 20 0
3244 21 15 0
3245 8 8 0
3246 8 6 0
3247 19 17 0
3248 13 15 0
3249 10 12 0
3250 37 34 0
3252 42 41 0
3253 22 20 0
3254 36 41 0
3255 27 27 0
3256 16 14 0
3257 15 12 0
3258 11 9 0
3259 13 8 0
3260 10 10 0
3261 14 11 0
3262 4 4 0
3263 11 14 0
3264 3 2 0
3265 17 17 0
3266 62 52 0
3267 11 4 0
3268 8 8 0
3269 44 36 0
3270 13 13 0
3271 13 8 0
3272 51 29 0
3273 11 7 0
3274 26 23 0
3275 44 33 0
3276 15 15 0
3277 10 8 0
3278 11 15 0
3279 9 9 0
3280 28 27 0
3281 20 18 0
3282 2 2 0
3283 10 9 0
3284 11 14 0
3285 48 42 0
3286 9 9 0
3287 21 20 0
3288 6 5 0
3289 25 21 0
3290 10 10 0
3291 12 10 0
3292 5 8 0
3293 3 1 0
3294 23 18 0
3295 13 9 0
3296 39 53 0
3297 2 3 0
3298 8 4 0
3299 10 9 0
3300 59 53 0
3301 5 6 0
3302 5 5 0
3303 14 11 0
3304 2 6 0
3305 5 6 0
3306 21 18 0
3307 49 49 0
3308 34 21 0
3309 15 12 0
3310 59 69 0
3311 20 24 0
3312 10 11 0
3313 15 16 0
3314 7 10 0
3315 3 5 0
3316 52 48 0
3317 4 3 0
3318 41 28 0
3319 22 21 0
3320 11 10 0
3322 15 11 0
3323 15 7 0
3324 2 10 0
3325 27 25 1
3326 12 11 0
3327 6 7 0
3328 2 2 0
3329 23 23 0
3330 28 23 0
3331 15 13 0
3332 20 22 0
3333 27 24 0
3334 5 5 0
3335 51 49 0
3336 26 27 0
3337 1 1 0
3338 26 26 0
3339 8 2 0
3340 68 49 0
3341 7 10 0
3342 29 25 0
3343 17 10 1
3344 14 7 0
3345 11 14 0
3346 6 6 0
3347 59 60 0
3348 20 22 0
3349 25 32 0
3350 44 31 0
3351 66 59 0
3352 13 14 0
3353 5 10 0
3354 13 16 0
3355 24 19 0
3356 7 7 0
3357 12 10 0
3358 40 50 0
3359 35 29 0
3360 44 46 0
3361 2 3 0
3362 36 34 0
3363 17 11 0
3364 5 7 0
3365 7 12 0
3366 16 10 0
3367 15 19 0
3368 3 5 0
3369 16 12 0
3370 23 22 0
3371 25 23 0
3372 11 10 0
3373 47 59 0
3374 21 21 1
3375 20 26 0
3376 10 5 0
3377 2 5 0
3378 7 8 0
3379 13 11 0
3380 15 13 0
3381 6 5 0
3382 22 14 0
3383 0 2 0
3384 6 7 0
3385 25 26 0
3386 9 7 0
3387 5 6 0
3388 7 7 0
3389 39 37 0
3390 15 11 0
3391 20 18 0
3392 3 6 0
3393 13 7 0
3394 4 4 0
3395 50 61 0
3396 3 6 0
3397 8 8 0
3398 6 9 0
3399 7 5 0
3400 36 35 0
3401 10 7 0
3402 9 6 0
3403 7 10 0
3404 15 11 0
3405 7 8 0
3406 30 20 1
3407 4 4 0
3408 34 35 0
3409 3 7 0
3410 4 7 0
3411 26 26 0
3413 46 30 0
3414 8 4 0
3415 45 35 0
3416 1 2 0
3417 43 40 0
3418 21 29 0
3419 5 8 0
3420 15 14 0
3421 3 1 0
3422 9 9 0
3423 20 15 0
3424 15 15 0
3425 26 15 0
3426 26 31 0
3427 7 5 0
3428 34 33 0
3429 7 7 0
3430 24 17 0
3431 7 7 0
3432 25 22 0
3433 6 5 0
3434 5 5 0
3435 28 14 0
3436 8 6 0
3437 9 4 0
3438 4 6 0
3439 9 10 0
3440 18 22 0
3441 9 14 1
3442 12 15 0
3443 5 7 0
3444 28 23 0
3445 11 9 0
3446 26 24 0
3447 5 6 0
3448 15 14 0
3449 17 28 0
3450 33 33 0
3451 6 4 0
3452 36 36 0
3453 3 2 0
3454 8 6 0
3455 63 58 0
3456 3 5 0
3457 30 35 0
3458 20 19 0
3459 9 7 0
3460 22 21 0
3461 26 21 0
3462 33 35 0
3463 3 5 0
3464 10 4 0
3465 8 7 0
3466 9 12 0
3467 16 10 0
3468 9 8 0
3469 11 7 0
3470 21 18 0
3471 0 1 0
3472 20 19 0
3473 25 18 0
3474 28 32 0
3475 5 8 0
3476 5 6 0
3477 19 16 0
3478 8 5 0
3479 7 6 0
3480 32 26 0
3481 46 53 0
3482 25 15 0
3483 22 23 0
3484 15 14 0
3485 33 29 0
3486 11 14 0
3487 4 6 0
3488 20 15 0
3489 6 7 0
3490 34 31 0
3491 6 10 0
3492 19 14 0
3493 5 7 0
3494 15 12 0
3495 19 19 0
3496 15 11 0
3497 12 13 1
3498 10 6 0
3499 10 12 0
3500 62 49 0
3501 17 15 0
3502 3 5 0
3503 3 7 0
3504 11 15 1
3505 35 39 1
3506 15 9 0
3507 4 3 0
3508 4 6 0
3509 1 3 0
3510 20 16 0
3511 6 7 0
3512 11 10 0
3513 5 5 0
3514 21 15 0
3515 21 16 0
3516 36 35 0
3517 17 12 0
3518 6 4 0
3519 15 14 0
3520 12 15 0
3521 7 9 0
3522 3 2 0
3523 2 1 0
3524 10 10 0
3525 13 13 0
3526 13 8 0
3527 87 87 0
3528 25 22 0
3529 2 2 0
3530 12 10 0
3531 6 9 0
3532 14 9 0
3533 18 18 0
3534 15 9 0
3535 5 4 0
3536 20 15 0
3537 6 4 0
3538 23 23 0
3539 6 3 0
3540 29 23 0
3541 21 15 0
3542 3 4 0
3543 1 3 0
3544 4 5 0
3545 4 9 0
3546 7 5 0
3547 6 6 0
3548 18 14 0
3549 50 42 0
3550 20 16 0
3551 6 8 0
3552 45 25 0
3553 7 5 0
3554 17 11 0
3555 14 12 0
3556 3 3 0
3557 1 1 0
3558 17 12 0
3559 3 3 0
3560 31 32 0
3561 13 14 0
3562 3 3 0
3563 6 6 0
3564 5 5 0
3565 22 19 1
3566 11 7 0
3567 11 11 0
3568 4 4 0
3569 12 10 0
3570 14 12 0
3571 12 9 0
3572 4 4 0
3574 19 13 0
3575 14 15 0
3576 7 7 0
3577 0 1 0
3578 3 3 0
3579 6 5 0
3580 30 23 0
3581 7 7 0
3582 12 10 0
3583 14 16 0
3584 9 9 0
3585 17 12 0
3586 6 5 0
3587 36 27 0
3588 9 10 0
3589 19 16 0
3590 22 21 0
3591 9 13 0
3592 1 4 0
3593 7 8 0
3594 3 6 0
3595 6 7 0
3596 14 12 0
3597 0 2 0
3598 15 12 0
3599 4 5 0
3600 30 24 0
3601 13 8 0
3602 4 8 0
3603 10 10 0
3604 5 5 0
3605 10 21 0
3606 7 6 0
3607 3 4 0
3608 10 7 0
3609 8 7 0
3610 22 19 0
3611 25 17 0
3612 3 2 0
3613 18 18 0
3614 13 11 0
3615 11 9 0
3616 13 17 0
3617 5 3 0
3618 63 32 0
3619 10 6 0
3620 19 17 0
3621 17 12 0
3622 8 3 0
3623 40 29 0
3624 10 6 0
3625 22 16 0
3626 16 8 0
3627 28 39 0
3629 44 28 0
3630 6 4 0
3631 3 3 0
3632 6 7 0
3633 13 11 0
3634 11 7 0
3635 22 29 0
3636 5 7 0
3637 10 17 0
3638 26 18 0
3639 9 4 0
3640 50 58 0
3641 8 7 0
3642 5 5 0
3643 6 5 0
3644 29 16 0
3645 17 8 0
3646 14 9 0
3647 11 6 0
3648 2 3 0
3649 39 32 0
3650 42 39 0
3651 19 24 0
3653 15 11 0
3654 16 9 0
3655 6 6 0
3656 22 14 0
3657 12 10 0
3658 5 2 0
3659 1 1 0
3660 31 30 0
3661 2 1 0
3662 7 12 0
3663 7 5 0
3664 0 1 0
3665 52 31 0
3666 24 11 0
3667 17 14 0
3668 11 12 0
3669 12 8 0
3670 8 10 0
3671 2 3 0
3672 5 9 0
3673 1 2 0
3674 7 12 0
3675 14 15 0
3676 15 11 0
3677 8 10 0
3678 3 5 0
3679 7 4 0
3680 7 12 0
3681 11 6 0
3682 16 11 0
3683 15 7 0
3684 12 8 0
3685 18 17 0
3686 27 25 0
3687 3 3 0
3688 10 6 0
3689 13 9 0
3690 3 5 0
3691 0 3 1
3692 15 12 0
3693 16 11 0
3694 13 11 0
3695 13 13 0
3696 3 4 0
3697 9 6 0
3698 6 5 0
3699 7 6 0
3700 192 145 0
3701 42 33 0
3702 3 5 0
3704 36 34 0
3705 17 17 0
3706 15 15 0
3707 0 5 0
3708 4 4 0
3709 8 4 0
3710 22 20 0
3711 10 10 0
3712 11 10 0
3713 10 7 0
3714 11 9 0
3715 25 16 0
3716 6 5 0
3717 10 9 0
3718 17 12 0
3719 8 8 0
3720 11 7 0
3721 6 4 0
3722 1 1 0
3723 2 2 0
3724 3 6 0
3725 12 8 0
3726 9 12 0
3727 27 16 0
3728 6 7 0
3729 2 2 0
3730 27 26 0
3731 3 3 0
3732 1 2 0
3733 21 11 0
3734 4 2 0
3735 4 7 0
3736 9 10 0
3737 8 7 0
3738 1 1 0
3739 9 8 0
3740 10 10 0
3741 7 11 0
3742 4 3 0
3743 3 4 0
3744 5 4 0
3745 25 17 0
3746 6 8 0
3747 4 5 0
3748 10 9 0
3750 16 15 0
3751 2 3 0
3752 18 21 0
3753 1 2 0
3754 19 15 0
3755 10 11 0
3756 7 2 0
3757 27 35 0
3758 10 10 0
3759 32 27 0
3760 21 13 0
3761 9 5 0
3762 19 12 0
3763 9 14 0
3764 6 6 0
3765 3 4 0
3766 15 11 0
3767 6 3 0
3768 9 14 0
3769 5 6 0
3770 31 31 0
3771 3 4 0
3772 6 6 0
3773 46 28 0
3774 5 8 0
3775 9 9 0
3776 8 4 0
3777 8 6 0
3778 14 6 0
3779 21 12 0
3780 20 12 0
3781 7 9 0
3782 8 5 0
3783 7 6 0
3784 0 2 0
3785 23 15 0
3786 17 11 0
3787 4 4 0
3788 13 11 0
3789 10 8 0
3790 25 24 0
3791 8 6 0
3792 29 25 0
3793 19 15 0
3794 16 16 0
3795 13 17 0
3796 8 11 0
3797 32 22 0
3798 3 4 0
3799 7 3 0
3800 41 38 0
3801 11 5 0
3802 6 6 0
3803 23 19 0
3804 43 32 0
3805 31 39 0
3806 10 9 0
3807 55 49 0
3808 6 3 0
3809 6 3 0
3810 22 23 0
3811 30 24 1
3812 46 36 0
3814 25 18 0
3815 17 11 0
3816 49 38 0
3817 35 26 0
3818 4 2 0
3819 20 14 0
3820 8 10 0
3821 6 5 0
3822 26 23 0
3823 4 3 0
3824 41 19 0
3825 26 15 0
3826 33 25 0
3827 10 11 0
3828 9 8 0
3829 21 20 0
3830 45 39 0
3831 7 7 0
3832 9 9 0
3833 3 7 0
3835 8 7 0
3836 23 21 0
3837 5 6 0
3838 71 58 1
3839 15 14 0
3840 17 9 0
3841 2 4 0
3842 17 16 0
3843 11 13 0
3844 17 20 0
3845 18 19 0
3846 27 25 0
3847 9 7 0
3848 8 6 0
3849 2 4 0
3850 63 48 0
3851 25 16 0
3852 11 7 0
3853 4 4 0
3854 19 13 0
3855 19 16 0
3856 12 8 0
3857 4 3 0
3858 66 52 0
3859 7 6 0
3860 19 18 0
3861 23 18 0
3862 12 10 0
3863 13 14 0
3864 15 13 0
3865 20 17 0
3866 3 4 0
3867 3 4 0
3868 21 19 0
3869 21 16 0
3870 14 13 0
3871 28 24 0
3872 18 19 0
3873 9 8 0
3874 7 5 0
3875 16 14 0
3876 18 13 0
3877 18 16 0
3878 9 7 0
3879 10 9 0
3880 18 17 0
3881 12 7 0
3882 6 9 0
3883 13 10 0
3884 29 22 0
3885 31 24 0
3886 22 21 0
3887 22 16 0
3888 62 45 0
3889 64 41 2
3890 44 33 0
3891 12 12 0
3892 15 11 0
3893 12 10 0
3894 1 2 0
3895 10 9 0
3896 4 4 0
3897 4 5 0
3898 13 8 0
3899 11 9 0
3900 28 29 0
3901 9 5 0
3902 21 18 0
3903 9 4 0
3904 7 8 0
3905 10 10 0
3906 24 21 0
3907 16 10 0
3909 28 16 0
3910 14 13 0
3911 17 20 0
3912 2 5 0
3913 6 7 1
3914 13 13 0
3915 27 16 0
3916 36 19 0
3917 8 9 0
3918 9 11 0
3919 9 5 0
3920 22 26 0
3921 7 4 0
3922 1 2 0
3923 1 3 0
3924 20 15 0
3925 11 13 0
3926 14 14 0
3927 9 8 0
3928 9 9 0
3929 27 32 0
3930 3 6 0
3931 35 23 0
3932 6 5 0
3933 8 8 0
3934 4 5 0
3935 42 41 0
3936 9 9 0
3937 9 9 0
3938 11 7 0
3939 8 7 0
3940 23 12 0
3941 7 5 0
3942 11 7 0
3943 3 3 0
3944 17 15 0
3945 13 15 0
3946 30 26 0
3947 8 7 0
3948 10 6 0
3949 6 5 0
3950 39 35 0
3951 4 4 0
3952 2 1 0
3953 13 10 0
3954 11 8 0
3955 25 20 0
3956 3 2 0
3957 19 14 0
3958 4 5 0
3959 58 52 0
3960 31 23 0
3961 2 3 0
3962 8 7 0
3963 7 2 0
3964 16 9 0
3965 5 2 0
3966 5 3 0
3967 15 12 0
3968 16 11 0
3969 8 6 0
3970 7 10 0
3971 3 6 0
3972 18 12 0
3973 16 12 0
3974 5 5 0
3975 30 11 0
3976 4 6 0
3977 7 11 1
3978 2 2 0
3979 8 3 0
3980 33 24 0
3981 5 3 0
3982 8 8 0
3983 28 18 0
3984 18 20 0
3985 14 21 0
3986 12 8 0
3987 3 2 0
3988 5 4 0
3989 8 7 0
3990 25 22 0
3991 3 4 0
3992 5 5 0
3993 22 19 0
3994 23 20 0
3995 26 20 0
3996 7 3 0
3997 43 43 0
3998 26 21 0
3999 0 1 0
4000 63 55 0
4001 12 8 0
4002 17 15 0
4003 20 18 0
4004 2 4 0
4005 31 24 0
4006 10 6 0
4007 5 4 0
4008 23 19 0
4009 4 6 0
4010 43 37 0
4011 17 16 0
4012 12 13 0
4013 5 8 0
4014 10 4 0
4015 33 22 0
4016 5 5 0
4017 7 4 0
4018 8 5 0
4019 10 11 0
4020 13 10 0
4021 9 4 0
4022 13 8 0
4023 26 17 0
4024 19 19 0
4025 28 22 0
4026 22 17 0
4027 7 9 0
4028 21 21 0
4029 3 3 0
4030 7 8 0
4031 12 12 0
4032 20 8 0
4033 13 8 0
4034 21 14 0
4035 18 11 0
4036 7 3 0
4037 1 2 0
4038 12 6 0
4039 18 12 0
4040 30 22 0
4042 12 14 0
4043 8 8 0
4044 4 1 0
4045 31 27 0
4046 26 16 0
4047 10 8 0
4048 16 16 0
4049 19 19 0
4050 21 22 0
4051 38 35 0
4052 15 3 0
4053 27 27 0
4054 6 6 0
4055 6 5 0
4056 14 9 0
4057 6 8 0
4058 8 9 0
4059 16 12 0
4060 7 7 0
4061 8 8 0
4062 7 3 0
4063 2 3 0
4064 8 6 0
4065 47 40 0
4066 8 7 0
4067 4 7 0
4068 12 20 0
4069 7 6 0
4070 11 5 0
4071 3 3 0
4072 13 9 0
4073 25 20 0
4074 1 1 0
4075 16 13 0
4076 13 15 0
4077 2 4 0
4078 2 2 0
4079 6 13 0
4080 11 13 0
4081 25 15 0
4082 9 8 0
4083 9 8 0
4085 5 6 0
4086 17 10 0
4087 3 2 0
4088 8 3 0
4089 4 7 0
4090 5 4 0
4091 0 2 0
4092 7 7 0
4093 14 12 0
4094 12 8 0
4095 5 4 0
4096 4 4 0
4097 19 17 0
4098 18 11 0
4099 2 2 0
4100 33 27 0
4101 5 5 0
4102 1 3 0
4103 0 1 0
4104 3 3 0
4105 14 11 0
4106 3 3 0
4107 29 18 0
4108 5 6 0
4109 4 5 0
4110 12 9 0
4111 1 2 0
4112 3 4 0
4113 22 20 0
4114 2 2 0
4115 10 13 0
4116 0 2 0
4117 6 3 0
4118 3 5 0
4119 7 6 0
4120 41 45 0
4121 9 8 0
4122 8 9 0
4123 7 5 0
4124 9 7 0
4125 22 17 0
4126 10 5 0
4127 14 18 0
4128 4 5 0
4129 16 11 0
4130 1 3 0
4131 12 12 0
4132 2 4 1
4133 15 13 0
4134 21 9 0
4135 8 8 0
4136 5 6 0
4137 1 1 0
4138 16 10 0
4139 16 17 0
4140 9 6 0
4141 10 10 0
4142 2 3 0
4143 4 1 0
4144 33 23 0
4145 18 18 0
4146 12 12 0
4147 8 10 0
4148 0 2 0
4149 2 2 0
4150 23 12 0
4151 6 8 0
4152 0 1 0
4153 1 3 0
4154 2 3 0
4155 1 1 0
4156 5 8 0
4157 13 11 0
4158 12 9 0
4159 4 5 0
4160 19 18 0
4161 3 2 0
4162 7 3 0
4163 9 6 0
4164 6 3 0
4165 54 39 0
4166 16 11 0
4167 5 7 0
4168 13 13 0
4169 22 21 0
4170 62 43 0
4171 3 2 0
4172 4 4 0
4173 5 9 0
4174 11 12 0
4175 31 25 0
4176 3 5 0
4177 4 3 0
4178 7 8 0
4179 6 5 0
4180 16 11 0
4181 4 4 0
4182 2 3 0
4183 4 5 0
4184 7 3 0
4185 2 2 0
4186 18 19 0
4187 8 9 0
4188 3 5 0
4189 31 23 0
4190 8 9 0
4191 23 19 0
4192 0 1 0
4193 4 1 0
4194 5 5 0
4195 4 4 0
4196 5 5 0
4197 1 1 0
4198 11 9 0
4199 1 2 0
4200 22 24 0
4201 4 2 0
4202 3 4 0
4203 11 6 0
4204 11 10 0
4205 15 11 0
4206 8 1 0
4207 0 1 0
4208 0 2 0
4209 5 8 0
4210 50 48 0
4211 17 13 0
4212 4 3 0
4213 1 1 0
4214 1 4 0
4215 27 18 0
4216 0 1 0
4217 8 5 0
4218 17 18 0
4220 19 17 1
4221 4 6 0
4222 7 8 0
4223 2 1 0
4224 7 12 0
4225 2 5 0
4226 10 11 0
4227 2 2 0
4228 7 9 0
4231 17 10 0
4232 16 11 0
4233 4 4 0
4234 1 2 0
4235 32 29 0
4236 17 8 0
4237 34 43 0
4238 3 4 0
4240 6 6 0
4241 9 10 0
4242 2 3 0
4244 8 5 0
4245 1 2 0
4246 33 27 0
4247 17 12 0
4249 2 1 0
4250 37 31 0
4251 4 2 0
4252 12 10 0
4253 2 2 0
4254 1 1 0
4255 25 21 0
4256 41 35 0
4257 31 25 0
4258 2 2 0
4259 13 9 0
4260 4 4 0
4261 5 5 0
4262 10 9 0
4263 2 1 0
4264 2 2 0
4265 5 5 0
4266 3 3 0
4267 6 4 0
4268 3 3 0
4269 11 6 0
4270 6 13 0
4272 12 13 0
4273 2 3 0
4274 10 11 0
4275 17 17 0
4276 0 1 0
4277 4 8 0
4278 2 3 0
4279 11 14 0
4280 0 1 0
4281 7 7 0
4282 16 12 0
4283 7 5 0
4284 1 2 0
4285 0 1 0
4286 4 2 0
4287 8 11 0
4288 22 21 0
4289 0 2 0
4290 1 5 0
4291 6 8 0
4292 5 5 0
4293 1 2 0
4294 1 2 0
4295 4 5 0
4296 16 16 0
4297 3 2 0
4299 18 8 0
4300 21 18 0
4301 6 6 0
4302 1 1 0
4303 29 31 0
4304 11 13 0
4305 1 5 0
4306 7 4 0
4307 6 4 0
4308 2 2 0
4309 9 10 0
4310 20 21 0
4311 16 11 0
4312 2 2 0
4313 1 2 0
4314 1 1 0
4315 0 1 0
4317 1 2 0
4318 2 4 0
4320 9 12 0
4321 4 6 0
4322 9 9 0
4323 0 1 0
4325 5 5 0
4326 6 6 0
4327 3 1 0
4328 5 5 0
4329 1 1 0
4330 6 7 0
4331 5 7 0
4332 3 4 0
4333 3 2 0
4334 2 3 0
4335 24 21 0
4336 0 2 0
4337 2 5 0
4338 3 5 0
4339 1 1 0
4340 7 3 0
4341 3 3 0
4342 6 4 0
4343 21 12 0
4344 4 3 0
4345 10 8 0
4346 14 11 0
4347 3 1 0
4348 2 1 0
4349 1 1 0
4350 8 5 0
4352 5 5 0
4353 6 6 0
4354 4 3 0
4355 2 3 0
4356 5 2 0
4357 21 12 0
4358 20 14 0
4359 3 2 0
4360 14 15 0
4362 2 4 0
4363 13 14 0
4364 11 6 0
4365 27 24 0
4366 6 4 0
4367 0 1 0
4368 7 2 0
4369 10 9 0
4370 8 8 0
4371 0 1 0
4372 29 15 0
4374 8 4 0
4375 3 2 0
4376 3 2 0
4377 6 5 0
4378 9 8 0
4379 29 24 0
4380 3 7 0
4381 1 2 0
4382 1 2 0
4383 17 14 0
4384 1 1 0
4385 1 1 0
4386 3 4 0
4387 23 18 0
4388 40 23 0
4389 2 8 0
4391 3 4 0
4392 9 8 0
4394 6 5 0
4395 4 2 0
4396 13 16 0
4397 3 4 0
4398 3 6 0
4399 2 5 0
4400 7 7 0
4401 1 2 0
4402 5 3 0
4403 1 2 0
4405 5 7 0
4408 1 1 0
4410 14 11 0
4411 4 7 0
4413 0 1 0
4414 5 6 0
4415 8 6 0
4416 11 9 0
4417 3 6 0
4418 1 1 0
4419 2 2 0
4420 5 7 0
4421 7 8 0
4422 1 1 0
4423 10 16 0
4424 0 1 0
4426 2 1 0
4427 12 11 0
4428 1 2 0
4429 8 5 0
4430 11 10 0
4431 8 13 0
4432 14 15 0
4433 0 1 0
4434 2 5 0
4435 8 7 0
4436 3 8 0
4437 2 10 0
4438 14 10 0
4439 6 12 0
4440 9 7 0
4441 0 1 0
4442 3 2 0
4443 4 4 0
4444 1 1 0
4445 3 3 0
4447 14 12 2
4448 3 3 0
4449 6 7 0
4450 13 15 0
4451 2 2 0
4452 4 5 0
4453 6 4 0
4455 9 6 0
4456 1 1 0
4457 3 4 0
4458 5 5 0
4459 1 2 0
4460 8 6 0
4461 2 1 0
4462 8 10 0
4463 12 12 0
4464 8 12 0
4465 19 16 0
4466 3 1 0
4467 5 4 0
4468 8 10 1
4469 19 11 0
4470 6 4 0
4471 11 7 0
4472 5 6 0
4473 9 10 0
4475 4 8 0
4476 5 7 1
4477 1 3 0
4478 8 7 0
4479 6 3 0
4480 1 1 0
4482 6 5 0
4483 3 1 0
4484 1 1 0
4485 12 14 0
4486 0 1 0
4487 1 1 0
4488 4 4 0
4489 4 4 0
4490 4 2 0
4491 4 3 0
4492 1 2 0
4493 4 3 0
4494 3 2 0
4495 12 8 0
4496 8 4 0
4497 7 5 0
4498 2 2 0
4499 2 2 0
4500 27 22 0
4501 0 1 0
4502 8 8 0
4503 5 3 0
4504 4 5 0
4505 1 1 0
4506 3 5 0
4507 18 10 0
4508 9 5 0
4509 8 7 0
4510 15 11 0
4511 2 2 0
4512 0 1 0
4513 1 4 0
4514 1 2 0
4515 2 3 0
4516 3 4 0
4517 9 3 0
4519 3 4 0
4520 2 4 0
4521 2 3 0
4522 1 1 0
4523 3 3 0
4524 0 1 0
4525 3 2 0
4526 5 2 0
4527 3 3 0
4528 9 16 0
4529 1 2 0
4531 2 2 0
4532 1 1 0
4533 0 2 0
4534 1 1 0
4535 2 1 0
4536 1 1 0
4537 2 2 0
4538 2 2 0
4540 11 11 0
4541 12 15 0
4543 3 3 0
4544 3 3 0
4545 0 1 0
4546 3 5 0
4547 1 1 0
4549 1 2 0
4550 11 9 0
4551 1 1 0
4552 9 9 0
4553 13 9 0
4554 1 2 0
4555 5 2 0
4556 6 9 0
4557 1 1 0
4558 6 5 0
4559 2 1 0
4560 1 2 0
4561 4 4 0
4562 7 4 0
4563 16 12 0
4564 1 2 0
4565 12 9 0
4566 2 2 0
4567 0 1 0
4568 4 1 0
4569 3 2 0
4571 1 2 0
4572 4 3 0
4573 0 1 0
4575 1 1 0
4576 18 24 0
4578 1 1 0
4579 4 2 0
4580 22 25 0
4581 1 2 0
4582 16 14 0
4583 4 4 0
4585 16 15 0
4586 18 21 0
4587 1 2 0
4588 0 2 0
4590 6 5 0
4591 5 4 0
4592 5 5 0
4593 1 1 0
4594 4 5 0
4595 1 1 0
4596 1 2 0
4597 2 3 0
4598 4 3 0
4600 14 7 0
4601 1 1 0
4603 3 4 0
4605 3 5 0
4606 2 2 0
4607 2 1 0
4608 11 12 0
4610 2 2 0
4611 2 2 0
4612 8 5 0
4613 9 7 0
4614 0 1 0
4615 3 4 0
4616 4 5 0
4618 3 3 0
4619 8 8 0
4620 4 6 0
4621 7 3 0
4623 1 1 0
4624 1 1 0
4625 2 2 0
4626 4 1 0
4627 19 16 0
4628 10 10 0
4629 8 7 0
4630 1 2 0
4631 4 1 0
4632 1 1 0
4634 4 4 0
4635 1 1 0
4637 6 3 0
4638 4 3 0
4639 2 1 0
4642 1 1 0
4643 0 1 0
4644 3 2 0
4645 1 1 0
4646 7 5 0
4647 4 6 0
4648 9 5 0
4649 1 1 0
4650 6 8 0
4651 1 2 0
4652 2 4 0
4655 8 6 0
4656 2 4 0
4657 1 1 0
4658 3 2 0
4659 1 4 0
4660 6 6 0
4661 1 1 0
4662 1 2 0
4663 1 3 0
4664 2 2 0
4665 4 4 0
4666 1 1 0
4667 7 3 0
4668 1 1 0
4669 2 5 0
4670 4 4 0
4672 5 3 0
4675 28 23 0
4676 0 1 0
4677 16 14 0
4678 6 4 0
4680 4 3 0
4682 1 1 0
4684 3 4 0
4685 4 4 0
4686 1 2 0
4687 2 2 0
4689 0 1 0
4690 2 2 0
4693 20 19 0
4695 2 2 0
4696 8 8 0
4697 3 2 0
4698 0 1 0
4699 1 3 0
4700 11 9 0
4701 5 2 0
4704 5 6 0
4705 3 2 0
4706 1 1 0
4707 3 1 0
4709 5 6 0
4710 2 1 0
4711 3 2 0
4712 0 1 0
4715 1 2 0
4716 9 10 0
4718 3 3 0
4719 3 3 0
4720 12 9 0
4721 3 3 0
4725 4 4 0
4726 5 8 0
4728 2 3 0
4729 1 2 0
4730 6 5 0
4731 12 16 0
4732 1 1 0
4733 1 1 0
4734 2 1 0
4735 5 2 0
4736 5 6 0
4737 1 1 0
4738 7 7 0
4739 6 3 0
4740 4 3 0
4742 4 2 0
4743 5 6 0
4744 7 3 0
4745 3 4 0
4748 5 4 0
4749 2 1 0
4750 1 1 0
4751 5 4 0
4752 6 4 0
4753 1 2 0
4754 1 1 0
4756 7 2 0
4757 4 1 0
4758 0 1 0
4760 9 4 0
4762 8 2 0
4763 1 1 0
4766 8 6 0
4767 4 5 0
4768 2 1 0
4770 3 3 0
4772 1 1 0
4773 4 5 0
4774 0 1 0
4775 10 10 0
4776 1 1 0
4777 2 2 0
4778 1 1 0
4779 1 1 0
4780 0 1 0
4781 2 3 0
4782 1 1 0
4783 1 1 0
4784 7 9 0
4785 5 5 0
4787 3 4 0
4788 2 2 0
4789 3 4 0
4790 3 3 0
4791 4 2 0
4792 7 5 0
4793 4 2 0
4795 6 8 0
4797 19 15 0
4798 0 1 0
4799 0 1 0
4800 11 10 0
4801 4 3 0
4802 14 13 0
4805 3 3 0
4806 1 2 0
4807 3 2 0
4809 2 2 0
4810 7 6 0
4811 8 6 0
4812 1 1 0
4813 8 4 0
4814 6 3 0
4815 5 6 0
4816 4 2 0
4817 3 3 0
4818 1 5 0
4819 2 2 0
4820 8 6 0
4822 2 2 0
4823 3 3 0
4824 6 7 0
4825 11 7 0
4826 1 2 0
4827 19 13 0
4828 11 6 0
4829 4 4 0
4830 3 2 0
4831 2 2 0
4833 1 1 0
4834 2 2 0
4835 3 2 0
4836 1 2 0
4837 6 5 0
4839 20 8 0
4840 1 2 0
4841 1 2 0
4842 2 1 0
4844 1 1 0
4845 3 4 0
4846 1 1 0
4847 1 1 0
4848 1 1 0
4849 1 2 0
4850 10 12 0
4851 0 1 0
4853 2 2 0
4856 2 1 0
4857 0 1 0
4859 4 3 0
4860 4 2 0
4861 0 1 0
4862 2 2 0
4863 2 2 0
4865 0 2 0
4866 3 3 0
4867 1 2 0
4868 5 3 0
4869 0 2 0
4870 2 2 0
4871 1 1 0
4873 1 1 0
4875 1 1 0
4876 3 1 0
4877 4 4 0
4878 1 1 0
4879 0 1 0
4881 1 1 0
4883 0 2 0
4884 2 2 0
4885 2 1 0
4886 3 5 0
4887 2 1 0
4888 4 3 0
4890 7 9 0
4891 2 3 0
4893 1 1 0
4894 3 2 0
4896 1 2 0
4897 1 1 0
4900 10 11 0
4901 5 6 0
4903 1 1 0
4904 2 1 0
4907 1 1 0
4908 4 2 0
4910 0 1 0
4911 5 4 0
4912 1 1 0
4913 0 1 0
4914 2 2 0
4916 1 1 0
4918 0 2 0
4919 0 3 0
4921 1 2 0
4922 4 4 0
4924 2 2 0
4925 2 2 0
4926 2 1 0
4927 6 6 0
4928 0 1 0
4929 2 1 0
4930 3 2 0
4931 1 1 0
4933 2 1 0
4935 0 2 0
4936 0 1 0
4937 1 1 0
4938 3 4 0
4940 1 1 0
4942 1 1 0
4943 4 2 0
4946 0 2 0
4947 3 6 0
4948 1 1 0
4950 1 2 0
4951 7 4 0
4952 2 1 0
4953 1 2 0
4954 1 4 0
4955 1 2 0
4956 2 1 0
4957 0 2 0
4958 3 5 0
4959 0 1 0
4960 23 20 0
4963 1 1 0
4965 3 3 0
4966 2 1 0
4967 1 1 0
4968 6 3 0
4969 1 3 0
4970 6 6 0
4971 4 3 0
4972 6 5 0
4974 1 1 0
4975 5 5 0
4976 2 2 0
4978 2 3 0
4979 1 1 0
4980 4 6 0
4981 0 2 0
4982 14 8 0
4983 3 3 0
4984 10 10 0
4987 4 3 0
4989 2 2 0
4990 0 1 0
4991 1 2 0
4992 7 11 0
4993 1 1 0
4995 1 1 0
5000 95 86 1
5001 4 4 0
5002 2 3 0
5005 10 10 0
5006 1 1 0
5007 0 2 0
5008 1 1 0
5011 0 1 0
5012 1 1 0
5013 8 6 0
5015 0 1 0
5016 0 1 0
5019 1 1 0
5020 5 2 0
5021 1 1 0
5022 6 4 0
5023 0 1 0
5024 1 1 0
5025 1 1 0
5027 4 3 0
5028 2 2 0
5031 0 1 0
5033 1 4 0
5035 4 2 0
5037 1 1 0
5038 14 6 0
5040 3 3 0
5043 3 3 0
5044 5 3 0
5045 0 1 0
5046 1 1 0
5049 4 2 0
5050 7 5 0
5052 1 1 0
5053 1 1 0
5054 2 1 0
5055 2 2 0
5059 4 1 0
5062 3 4 0
5065 1 1 0
5067 2 2 0
5070 1 1 0
5071 2 4 0
5076 2 2 0
5077 2 2 0
5079 3 2 0
5080 2 1 0
5082 2 4 0
5083 2 2 0
5085 1 1 0
5087 1 1 0
5088 0 2 0
5089 2 2 0
5090 8 8 0
5092 3 1 0
5094 0 1 0
5095 1 2 0
5100 12 11 0
5101 3 5 0
5102 3 3 0
5103 1 1 0
5104 1 1 0
5105 1 1 0
5108 6 6 0
5109 3 2 0
5111 4 4 0
5112 3 3 0
5113 4 3 0
5114 1 1 0
5115 4 4 0
5116 2 4 0
5117 2 2 0
5118 2 3 0
5119 1 1 0
5120 3 4 0
5121 5 7 0
5123 8 6 0
5124 6 4 0
5125 3 3 0
5127 1 3 0
5128 1 1 0
5129 1 1 0
5130 0 1 0
5134 1 2 0
5135 4 4 0
5136 6 13 0
5139 1 1 0
5140 2 2 0
5141 2 3 0
5142 3 2 0
5143 2 3 0
5144 21 13 0
5145 1 1 0
5146 7 6 0
5148 10 7 0
5150 5 6 0
5151 3 1 0
5152 5 3 0
5154 1 1 0
5157 1 1 0
5159 5 3 0
5160 1 1 0
5162 1 1 0
5165 15 10 0
5166 1 1 0
5167 1 1 0
5169 0 1 0
5174 5 3 0
5175 1 1 0
5176 1 2 0
5177 1 1 0
5178 1 1 0
5179 1 1 0
5180 3 2 0
5181 1 1 0
5182 3 1 0
5184 1 2 0
5186 0 1 0
5189 5 6 0
5190 1 1 0
5192 2 5 0
5196 3 2 0
5197 3 1 0
5198 1 1 0
5199 1 1 0
5200 7 6 0
5202 4 1 0
5204 2 2 0
5205 1 1 0
5206 4 2 0
5208 2 2 0
5209 4 3 0
5210 8 7 0
5211 3 2 0
5212 8 6 1
5217 2 2 0
5219 5 4 0
5220 1 1 0
5221 6 7 0
5222 2 2 0
5224 3 2 0
5225 3 2 0
5226 1 1 0
5227 1 1 0
5228 2 1 0
5229 3 2 0
5231 0 2 0
5232 7 10 0
5233 1 2 0
5234 2 2 0
5235 1 1 0
5236 8 7 0
5237 1 1 0
5238 1 1 0
5239 1 1 0
5240 2 4 0
5243 0 1 0
5244 2 3 0
5245 7 6 0
5247 0 4 0
5249 2 2 0
5250 13 6 0
5251 2 3 0
5252 2 1 0
5253 1 1 0
5254 1 1 0
5255 8 9 0
5256 1 1 0
5257 1 1 0
5258 1 4 0
5260 3 4 0
5265 2 1 0
5269 7 7 0
5270 20 17 0
5271 1 1 0
5272 2 2 0
5273 3 2 0
5275 3 3 0
5276 6 5 0
5279 10 5 0
5280 20 15 0
5281 2 1 0
5282 1 1 0
5283 1 1 0
5285 0 1 0
5286 2 1 0
5287 1 1 0
5289 2 2 0
5290 1 1 0
5291 2 2 0
5293 2 2 0
5295 15 15 0
5297 2 3 0
5299 4 4 0
5300 10 7 0
5303 1 1 0
5305 0 2 0
5306 4 2 0
5307 1 1 0
5308 1 1 0
5309 5 3 0
5310 1 2 0
5312 2 1 0
5313 1 1 0
5314 1 1 0
5316 0 1 0
5317 1 1 0
5321 1 1 0
5322 7 3 0
5323 3 3 0
5324 3 3 0
5325 1 2 0
5328 4 3 0
5329 8 8 0
5330 1 2 0
5331 1 1 0
5332 1 1 0
5333 1 3 0
5335 1 2 0
5336 6 1 0
5337 1 1 0
5339 4 5 0
5340 1 2 0
5343 0 1 0
5344 1 1 0
5345 4 3 0
5347 1 1 0
5348 1 1 0
5350 9 7 0
5352 0 1 0
5354 1 1 0
5356 1 2 0
5357 5 6 0
5358 0 1 0
5360 1 1 0
5361 1 1 0
5362 0 1 0
5364 0 1 0
5365 2 2 0
5368 5 4 0
5369 0 1 0
5370 1 1 0
5371 7 1 0
5372 1 1 0
5374 3 3 0
5376 1 1 0
5377 0 2 0
5379 3 3 0
5384 1 3 0
5385 2 1 0
5388 2 2 0
5389 2 2 0
5392 10 6 0
5393 0 1 0
5394 2 4 0
5396 22 16 0
5397 1 1 0
5400 6 8 0
5401 2 2 0
5402 2 2 0
5403 1 1 0
5404 3 5 0
5406 1 1 0
5407 1 2 0
5408 2 1 0
5409 2 2 0
5410 0 2 0
5411 13 15 0
5413 1 2 0
5414 2 1 0
5415 1 2 0
5416 1 1 0
5417 2 1 0
5419 6 4 0
5420 1 2 0
5421 1 3 0
5423 1 1 0
5426 1 2 0
5428 0 1 0
5432 1 1 0
5434 3 3 0
5437 0 1 0
5438 6 6 0
5439 3 3 0
5443 1 1 0
5444 2 2 0
5447 1 1 0
5448 2 2 0
5449 3 4 0
5450 4 2 0
5451 2 1 0
5452 5 2 0
5454 2 1 0
5455 2 1 0
5457 8 10 0
5458 1 1 0
5459 4 3 0
5461 4 4 0
5463 2 2 0
5465 0 1 0
5466 2 2 0
5468 2 1 0
5469 1 1 0
5470 1 3 0
5471 2 1 0
5472 2 2 0
5473 3 1 0
5474 1 1 0
5476 1 1 0
5477 1 1 0
5478 0 2 0
5479 3 2 0
5480 0 2 0
5482 6 4 0
5484 1 1 0
5487 3 3 0
5488 5 4 0
5489 0 1 0
5491 2 1 0
5492 3 1 0
5493 3 1 0
5494 0 1 0
5495 1 2 0
5496 0 1 0
5497 1 1 0
5499 0 1 0
5500 35 38 0
5501 1 1 0
5503 1 1 0
5505 2 1 0
5506 2 1 0
5508 1 1 0
5510 0 1 0
5511 5 4 0
5512 3 1 0
5513 2 1 0
5514 1 1 0
5516 13 14 1
5521 3 1 0
5523 2 1 0
5525 1 1 0
5526 3 1 0
5532 1 1 0
5535 14 12 0
5536 0 1 0
5538 1 2 0
5540 1 1 0
5541 2 2 0
5542 7 4 0
5543 3 3 0
5545 2 2 0
5548 13 8 0
5550 2 2 0
5552 1 1 0
5553 3 3 0
5554 3 2 0
5556 10 2 0
5557 13 12 0
5558 3 2 0
5560 1 2 0
5561 15 11 0
5562 1 1 0
5564 7 6 0
5565 2 6 0
5566 1 2 0
5567 8 8 0
5568 8 6 0
5570 2 2 0
5571 4 4 0
5573 4 6 0
5577 2 2 0
5578 1 3 0
5580 1 1 0
5582 3 4 0
5583 3 3 0
5585 5 1 0
5586 1 1 0
5589 0 1 0
5590 4 3 0
5591 4 3 0
5593 2 1 0
5595 5 4 0
5597 1 1 0
5598 1 1 0
5599 0 1 0
5600 54 51 0
5601 1 1 0
5603 7 4 0
5604 0 1 0
5606 12 10 0
5607 1 1 0
5609 1 1 0
5610 1 1 0
5611 3 2 0
5613 1 2 0
5614 1 1 0
5615 2 2 0
5616 3 2 0
5617 0 1 0
5619 1 1 0
5620 2 1 0
5622 1 1 0
5623 1 1 0
5624 1 1 0
5625 3 1 0
5628 3 4 0
5629 2 2 0
5630 1 1 0
5632 1 1 0
5633 2 2 0
5634 2 1 0
5635 1 4 0
5637 1 1 0
5639 2 2 0
5640 3 3 0
5641 5 4 0
5642 0 1 0
5643 0 3 0
5645 4 4 0
5646 1 1 0
5647 1 1 0
5648 3 4 0
5649 3 2 0
5650 3 3 0
5651 1 1 0
5653 1 1 0
5654 1 2 0
5655 1 2 0
5657 3 2 0
5658 5 3 1
5659 1 1 0
5660 1 3 0
5665 0 1 0
5666 3 2 0
5671 1 2 0
5672 8 5 0
5673 2 2 0
5674 1 2 0
5675 3 1 0
5680 1 1 0
5682 1 1 0
5684 1 2 0
5685 1 1 0
5686 1 3 0
5687 1 1 0
5689 1 1 0
5690 2 3 0
5691 2 2 0
5694 1 1 0
5695 3 4 0
5697 2 2 0
5698 2 2 0
5699 1 1 0
5700 3 3 0
5701 1 3 0
5708 1 1 0
5709 1 1 0
5710 1 1 0
5713 2 1 0
5714 2 1 0
5717 1 1 0
5718 2 4 0
5720 1 2 0
5722 6 1 0
5723 4 4 0
5726 0 2 0
5730 1 1 0
5731 1 1 0
5733 3 3 0
5735 0 1 0
5736 2 1 0
5737 1 1 0
5740 2 4 0
5742 4 2 0
5743 1 1 0
5744 0 2 0
5746 2 1 0
5750 9 7 0
5751 1 1 0
5752 1 2 0
5755 1 1 0
5757 1 1 0
5768 1 1 0
5771 1 1 0
5774 1 1 0
5775 1 1 0
5776 0 1 0
5778 0 1 0
5782 1 1 0
5783 1 1 0
5784 0 2 0
5785 5 3 0
5796 10 3 0
5797 9 6 0
5799 2 3 0
5800 11 11 0
5803 1 2 0
5804 1 2 0
5806 2 2 0
5807 0 1 0
5809 7 2 0
5810 2 2 0
5811 1 1 0
5815 1 1 0
5816 1 2 0
5818 1 1 0
5825 10 6 0
5827 0 1 0
5829 7 1 0
5832 6 4 0
5833 0 1 0
5838 1 1 0
5839 3 1 0
5840 1 1 0
5842 1 2 0
5850 6 7 0
5852 2 2 0
5863 5 5 0
5864 0 1 0
5865 1 1 0
5866 3 2 0
5868 15 8 0
5871 3 5 0
5872 8 6 0
5875 10 4 0
5877 0 1 0
5880 11 9 0
5882 1 1 0
5883 0 1 0
5884 2 1 0
5885 3 1 0
5891 0 1 0
5892 1 1 0
5898 34 12 0
5900 2 6 0
5901 1 1 0
5902 50 24 0
5908 3 1 0
5911 5 3 0
5912 1 1 0
5915 1 1 0
5917 0 1 0
5919 0 1 0
5921 1 1 0
5925 1 1 0
5926 3 1 0
5928 4 3 0
5933 3 1 0
5935 6 2 0
5945 1 1 0
5947 5 4 0
5950 0 1 0
5955 0 1 0
5956 0 1 0
5959 0 1 0
5962 0 1 0
5967 2 1 0
5969 0 3 0
5980 1 1 0
5984 5 2 0
5986 1 1 0
5991 5 6 0
5993 0 1 0
5995 1 1 0
5996 3 1 0
5997 20 7 0
6000 58 54 0
6001 0 1 0
6010 2 3 0
6011 3 2 0
6013 4 1 0
6019 1 1 0
6030 0 2 0
6035 1 1 0
6038 2 2 0
6039 9 8 0
6041 1 1 0
6042 1 1 0
6047 2 1 0
6050 9 5 0
6051 2 1 0
6052 1 1 0
6058 1 3 0
6064 0 1 0
6071 1 1 0
6080 0 1 0
6084 1 1 0
6096 1 1 0
6100 11 8 0
6101 2 1 0
6103 2 1 0
6107 1 1 0
6113 3 4 1
6117 2 2 0
6118 3 1 0
6119 1 1 0
6122 1 1 0
6129 1 1 0
6134 1 1 0
6135 2 1 0
6139 0 1 0
6143 5 1 0
6145 2 2 0
6154 1 1 0
6160 2 2 0
6162 5 2 0
6168 1 1 0
6177 5 3 0
6178 1 1 0
6180 1 1 0
6181 2 1 0
6183 1 1 0
6186 14 4 0
6188 2 1 0
6197 2 1 0
6200 15 8 0
6217 2 1 0
6221 9 3 0
6222 1 1 0
6227 1 1 0
6229 12 9 0
6233 3 3 0
6240 0 1 0
6246 0 1 0
6250 4 3 0
6253 1 1 0
6254 1 1 0
6258 0 1 0
6261 1 1 0
6279 2 1 0
6280 1 1 0
6286 0 1 0
6300 3 2 0
6303 1 1 0
6305 1 1 0
6311 1 1 0
6317 0 1 0
6322 0 1 0
6325 2 1 0
6341 2 1 0
6345 1 1 0
6350 2 1 0
6363 4 2 0
6365 0 1 0
6377 2 1 0
6393 2 1 0
6400 12 14 0
6420 0 1 0
6425 1 1 0
6430 1 1 0
6436 1 1 0
6440 0 1 0
6463 1 1 0
6484 1 1 0
6485 1 1 0
6495 1 1 0
6499 0 1 0
6500 47 51 2
6511 0 1 0
6513 1 1 0
6521 2 1 0
6522 0 1 0
6528 4 2 0
6550 6 2 0
6577 2 1 0
6583 1 1 0
6586 1 1 0
6592 2 1 0
6600 31 30 0
6604 2 1 0
6609 1 1 0
6617 0 1 0
6632 1 1 0
6640 1 1 0
6646 1 1 0
6650 3 4 0
6675 2 1 0
6676 1 1 0
6700 22 24 0
6750 1 2 0
6751 1 1 0
6770 1 1 0
6784 0 1 0
6786 1 1 0
6800 21 20 0
6815 1 1 0
6817 1 1 0
6828 1 1 0
6837 0 1 0
6838 1 1 0
6841 3 1 0
6850 3 2 0
6852 1 1 0
6858 4 3 0
6862 1 1 0
6867 2 1 0
6881 2 1 0
6898 1 1 0
6900 49 37 0
6911 1 1 0
6932 1 2 0
6950 6 7 0
6955 1 1 0
6970 0 1 0
6975 1 1 0
6990 3 3 0
6997 3 1 0
6999 1 1 0
7000 45 37 0
7005 1 1 0
7013 1 1 0
7017 1 1 0
7050 1 1 0
7079 1 1 0
7100 11 6 0
7190 1 2 0
7200 58 45 0
7203 1 1 0
7210 1 1 0
7236 3 1 0
7250 2 1 0
7262 1 1 0
7270 2 1 0
7300 25 18 0
7305 2 1 0
7387 1 1 0
7401 1 1 0
7419 1 2 0
7450 1 1 0
7500 10 13 0
7548 1 1 0
7585 1 1 0
7600 2 1 0
7605 0 1 0
7615 1 1 0
7624 1 1 0
7635 1 1 0
7650 4 1 0
7680 2 3 0
7685 0 1 0
7690 2 2 0
7692 3 1 0
7695 2 1 0
7700 1 2 0
7740 4 1 0
7749 0 1 0
7752 1 1 0
7760 4 3 0
7765 1 1 0
7780 2 1 0
7785 2 3 0
7800 1 1 0
7867 1 1 0
7868 1 1 0
7900 3 2 0
7910 0 1 0
7915 2 1 0
7938 0 1 0
7940 2 1 0
7977 1 1 0
8000 18 18 0
8020 3 1 0
8080 1 1 0
8110 1 1 0
8120 2 2 0
8130 1 1 0
8190 1 1 0
8200 4 1 0
8240 1 1 0
8250 2 2 0
8265 3 1 0
8300 1 1 0
8380 1 1 0
8390 1 1 0
8410 0 1 0
8500 17 12 0
8520 4 6 0
8528 1 1 0
8550 21 22 0
8568 1 1 0
8600 162 142 1
8601 1 1 0
8700 2 4 0
8720 3 3 0
8730 2 2 0
8785 1 1 0
8800 10 10 1
8842 1 1 0
8863 1 1 0
8872 1 1 0
8900 10 13 0
8910 2 1 0
8950 0 1 0
8995 0 1 0
9000 19 23 0
9060 2 2 0
9064 1 1 0
9100 2 2 0
9144 3 1 0
9160 2 2 0
9200 23 21 0
9246 0 1 0
9250 1 1 0
9300 0 1 0
9360 1 1 0
9380 2 1 0
9400 32 29 0
9408 2 1 0
9440 1 1 0
9455 1 1 0
9500 105 86 0
9510 1 1 0
9550 2 1 0
9595 0 1 0
9600 29 26 0
9610 1 1 0
9620 1 1 0
9640 4 4 0
9680 1 1 0
9700 3 2 0
9800 2 3 0
9890 2 1 0
9900 10 10 0
9914 1 1 0
9990 4 6 0
9995 7 2 0
9999 2 5 0
10000 41 51 1
10002 1 1 0
10100 3 3 0
10120 1 1 0
10200 0 3 0
10400 3 1 0
10500 10 7 0
10700 12 9 0
10709 0 1 0
10790 1 1 0
10800 2 2 0
10898 1 1 0
10920 4 2 0
10938 1 2 0
10989 1 1 0
11000 48 30 0
11030 2 2 0
11050 10 9 0
11082 1 1 0
11093 1 1 0
11100 1 1 0
11215 0 1 0
11244 1 1 0
11300 1 1 0
11330 0 1 0
11345 5 3 0
11363 1 2 0
11378 3 2 0
11380 4 4 0
11388 0 1 0
11400 6 4 0
11500 13 14 0
11600 1 1 0
11622 1 1 0
11700 3 2 0
12000 28 27 0
12040 1 1 0
12200 1 2 0
12260 1 1 0
12300 2 5 0
12420 0 1 0
12499 1 1 0
12500 14 13 0
12600 0 1 0
12750 1 1 0
12914 1 1 0
13000 3 1 0
13250 6 5 0
13400 0 1 0
13500 7 3 0
13828 2 2 0
13983 1 1 0
14000 22 13 0
14010 1 1 0
14050 13 10 0
14100 7 9 0
14140 0 1 0
14160 1 1 0
14196 1 1 0
14200 0 1 0
14250 20 20 0
14341 1 1 0
14360 1 1 0
14400 4 1 0
14450 1 1 0
14500 47 61 0
14510 2 2 0
14680 1 1 0
14756 1 1 0
14800 0 1 0
14950 0 1 0
15000 41 40 0
15200 1 1 0
15201 1 1 0
15225 1 1 0
15298 1 1 0
15500 1 1 0
15642 1 1 0
15658 8 1 0
15760 1 2 0
16000 34 32 0
16032 0 1 0
16066 1 1 0
16196 1 1 0
16200 1 1 0
16500 3 6 0
16520 1 1 0
16563 0 1 0
16809 1 1 0
16950 4 1 0
17000 4 5 0
17196 4 4 0
17200 0 1 0
17356 1 1 0
17500 25 19 1
17600 10 12 0
17800 2 2 0
17900 14 14 0
17916 1 1 0
17950 41 45 0
17990 3 8 0
17995 49 57 0
17996 1 1 0
17999 14 13 0
18000 39 39 1
18400 1 1 0
19000 4 6 0
19016 0 1 0
19280 2 1 0
19500 15 13 0
19600 1 1 0
19640 2 1 0
19850 1 1 0
19900 7 1 0
19928 0 1 0
20000 5 4 0
20500 0 1 0
20640 0 1 1
21018 2 1 0
21440 1 1 0
21680 1 1 0
22000 1 3 0
22200 2 1 0
22831 0 1 0
23000 10 9 0
23440 1 1 0
23500 1 2 0
23900 2 1 0
24000 8 5 0
24115 1 1 0
24200 1 1 0
24500 3 3 0
24660 1 1 0
24800 3 1 0
24900 1 1 0
24990 0 1 0
24999 2 1 0
25000 11 9 0
25500 52 56 0
25550 2 3 0
25600 1 2 0
25750 1 1 0
25800 8 2 0
25900 11 11 0
25950 21 20 0
25955 0 1 0
25990 5 3 0
25995 29 27 0
25999 16 20 0
26000 48 65 1
26380 1 1 0
26500 1 1 0
26900 1 1 0
26990 1 1 0
27000 0 1 0
27100 0 1 0
27500 1 1 0
27560 2 1 0
27783 0 2 0
28000 3 6 0
28263 0 3 0
29000 12 14 0
29260 0 1 0
29410 0 1 0
29500 0 3 0
30000 20 20 0
30500 1 2 0
31000 0 1 0
32000 14 20 0
32200 6 6 0
32350 0 1 0
32500 2 3 0
32700 4 3 0
32900 37 36 0
32990 4 5 0
33000 93 92 0
33200 1 1 0
33900 1 1 0
34000 4 2 0
34900 2 1 0
35000 6 12 0
36000 13 8 0
36220 2 2 0
36300 1 1 0
36800 1 1 0
38000 6 7 0
38500 0 1 0
38700 1 1 0
39000 3 1 0
39900 2 2 0
40000 5 4 0
41000 1 1 0
42000 1 2 0
42800 1 1 0
44000 7 4 0
44200 0 1 0
44500 0 1 0
44799 4 1 0
44800 12 8 0
45000 1 1 0
45220 1 1 0
46000 0 1 0
48000 4 4 0
48940 3 1 0
49000 0 1 0
50000 22 21 0
50499 1 1 0
51000 7 7 1
51999 1 1 0
52000 8 13 0
52080 1 1 0
52350 1 1 0
52500 1 1 0
53000 5 7 0
53200 1 3 0
53220 7 6 0
54000 38 41 2
54500 0 1 0
54900 1 4 0
54990 3 3 0
54999 2 3 0
55000 15 12 2
56000 7 7 1
56500 1 1 0
57000 10 10 0
57500 1 1 0
58000 18 16 0
58878 0 1 0
59000 2 3 0
59180 1 1 0
60000 9 6 0
60420 1 1 0
61000 1 1 0
61400 2 1 0
62000 0 2 0
62120 1 1 0
63000 1 1 0
63120 2 1 0
64000 1 5 0
65000 4 4 0
65098 1 2 0
66000 4 7 0
66400 1 1 0
67000 0 2 0
67500 1 1 0
68000 2 4 0
68160 1 1 0
68200 1 1 0
68420 5 2 0
68750 1 1 0
69897 1 1 0
70000 3 4 0
70030 33 80 0
70300 0 1 0
70625 0 1 2
71563 1 1 0
72000 17 67 0
72220 1 1 0
73280 2 3 0
74167 2 1 0
75000 2 1 0
76000 10 11 0
76460 0 1 0
77000 1 2 0
78000 2 1 0
79000 14 12 0
80000 81 96 2
81000 1 1 0
82000 8 7 0
82800 3 3 0
83340 0 1 0
84000 2 1 0
85000 1 3 0
93500 0 1 0
100000 2 1 0
101750 3 2 0
102000 1 3 0
105000 0 1 0
107000 3 4 1
117000 0 1 0
120000 7 11 0
158200 0 1 0
320715 1 1 0
>>>>> END <<<<<

Factor Dataset


In [14]:
print factors.head()
len(factors)


   case_num  case_yr  veh_seq_num  aprnt_seq_num aprnt_fctr       crashid
0  31708092     2005            1              1         ZZ  317080922005
1  31722193     2005            2              2         ZZ  317221932005
2  31720835     2005            1              1         42  317208352005
3  31720835     2005            3              2         ZZ  317208352005
4  31725298     2005            1              2         YY  317252982005
Out[14]:
132744

In [27]:
vehicles['uid'] = vehicles.crashid.map(str) + "_" + vehicles.veh_seq_num.map(str)
factors['uid'] = factors.crashid.map(str) + "_" + factors.veh_seq_num.map(str)

vehicles.crashid


Out[27]:
0         11032032001
1         11032032001
2         11032322001
3         11032322001
4         11032412001
5         11032412001
6         11032412001
7         11033772001
8         11033772001
9         11033772001
10        11033772001
11        11046112001
12        11046112001
13        11047672001
14        11047672001
15        11047922001
16        11047922001
17        11048012001
18        11048012001
19        11048012001
20        11059052001
21        11059052001
22        11059432001
23        11059432001
24        11059502001
25        11059502001
26        11060692001
27        11060692001
28        11060832001
29        11060832001
             ...     
66342    356345442014
66343    356345442014
66344    356345472014
66345    356345472014
66346    356372572014
66347    356372572014
66348    356430272014
66349    356430272014
66350    356479652014
66351    356479652014
66352    356479652014
66353    356479662014
66354    356479662014
66355    356479662014
66356    356479662014
66357    356996552014
66358    356996552014
66359    356886442014
66360    356886442014
66361    356886442014
66362    357124922014
66363    357124922014
66364    356954922014
66365    356954922014
66366    356977442014
66367    356977442014
66368    357021242014
66369    357021242014
66370    357021262014
66371    357021262014
Name: crashid, dtype: int64

In [40]:
factor_out = summarize(["aprnt_fctr"], factors, include_sums = False)
factor_out.sort('')


>>>>> START <<<<<
>>>>>>>>>>>>>>>>>>>>
APRNT_FCTR
crashid
count
aprnt_fctr
01 4
02 353
03 579
04 6192
05 719
06 29
07 2634
08 99
09 2414
10 60
11 60
12 122
13 913
14 1496
15 23
16 15
17 1364
18 1129
19 1035
20 773
21 71
22 30
23 6
24 12
25 143
26 544
27 107
28 298
29 101
31 2
32 4
33 4
34 2
40 980
41 35
42 258
43 2
44 6
45 214
46 48
47 40
48 9
49 5
50 24
51 1
60 1415
61 17
62 211
63 35
64 108
65 104
66 1018
67 6
68 63
69 397
80 82
XX 13567
YY 11893
ZZ 80869
>>>>> END <<<<<
Out[40]:
pandas.core.frame.DataFrame

In [62]:
print factor_out.columns.get_level_values(1)
test = factor_out.iloc[:, factor_out.columns.get_level_values(1)=='count']


Index([u'count'], dtype='object')

In [78]:
pd.DataFrame(test['crashid']['count']).sort_values('count')


Out[78]:
count
aprnt_fctr
51 1
31 2
43 2
34 2
33 4
32 4
01 4
49 5
67 6
44 6
23 6
48 9
24 12
16 15
61 17
15 23
50 24
06 29
22 30
63 35
41 35
47 40
46 48
11 60
10 60
68 63
21 71
80 82
08 99
29 101
65 104
27 107
64 108
12 122
25 143
62 211
45 214
42 258
28 298
02 353
69 397
26 544
03 579
05 719
20 773
13 913
40 980
66 1018
19 1035
18 1129
17 1364
60 1415
14 1496
09 2414
07 2634
04 6192
YY 11893
XX 13567
ZZ 80869