[skipping ahead a little]
- HMM vs. OMM:
- An HMM is a structure $(\newcommand{\reals}{\mathbb{R}} \reals^m, \{ T_a, T_b\}, w_-$
- Definition: an OOM is a structure
- Interpretable OOMs
- Definition:
- Let $O$ be a finite set of observables $k \geq 1$. A $k$-event is a nonempty subset of $O^k$
- Let $m \geq 1$.
- Learning OOMs from data:
- In an interpretable OOM,
$$\begin{align} w_0 & = (P(A_1),\dots,P(A_m)) \\
\tau_a w_0 & = (P(a A_1),\dots,P( a A_m)) \\
\tau_a \tau_b w_0 & = (P(b a A_1),\dots,P(b a A_m)) \\
& \dots
\end{align}$$
- $w_0, \tau_a, \tau_a \tau_b w_0, \dots$ can be estimated from data by counting frequencies
- Can obtain $\tau_a$ from argument-value pairs
$$ \begin{align} w_0 & \to \tau_a w_0\\
\tau_b w_0 & \to \tau_a \tau_b w_0\\
& \dots \end{align} $$