In [ ]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg
In [ ]:
plt.style.use('ggplot')
plt.rc('axes', grid=False) # turn off the background grid for images
Let us work with the matrix: $ \left[ \begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right] $
In [ ]:
my_matrix = np.array([[1,2],[1,1]])
print(my_matrix.shape)
In [ ]:
print(my_matrix)
In [ ]:
my_matrix_transposed = np.transpose(my_matrix)
print(my_matrix_transposed)
In [ ]:
my_matrix_inverse = linalg.inv(my_matrix)
print(my_matrix_inverse)
In [ ]:
my_matrix_inverse.dot(my_matrix)
In [ ]:
my_matrix_inverse * my_matrix_inverse
In [ ]:
A = np.array([[1,2],[1,1]])
print(A)
In [ ]:
b = np.array([[4],[3]])
print(b)
In [ ]:
# Solve by inverting A and then mulitply by b
linalg.inv(A).dot(b)
In [ ]:
# Cleaner looking
linalg.solve(A,b)
In [ ]:
A = np.array([[1,3,5],[2,5,1],[2,3,8]])
b = np.array([[10],[8],[3]])
print(linalg.inv(A))
print(linalg.solve(A,b))
In [ ]:
import sympy as sym
AA = sym.Matrix([[1,3,5],[2,5,1],[2,3,8]])
bb = sym.Matrix([[10],[8],[3]])
print(AA**-1)
print(AA**-1 * bb)
In [ ]:
%timeit AA**-1 * bb
%timeit linalg.solve(A,b)
In [ ]:
print(A)
plt.imshow(A, interpolation='nearest', cmap=plt.cm.Blues);
In [ ]:
I = np.load("test_data.npy") # load in a saved numpy array
In [ ]:
I.ndim, I.shape, I.dtype
In [ ]:
print("The minimum value of the array I is {0:.2f}".format(I.min()))
print("The maximum value of the array I is {0:.2f}".format(I.max()))
print("The mean value of the array I is {0:.2f}".format(I.mean()))
print("The standard deviation of the array I is {0:.2f}".format(I.std()))
In [ ]:
#flatten() collapses n-dimentional data into 1-d
plt.hist(I.flatten(),bins=30);
In [ ]:
II = I + 8
print("The minimum value of the array II is {0:.2f}".format(II.min()))
print("The maximum value of the array II is {0:.2f}".format(II.max()))
print("The mean value of the array II is {0:.2f}".format(II.mean()))
print("The standard deviation of the array II is {0:.2f}".format(II.std()))
In [ ]:
plt.imshow(I, cmap=plt.cm.gray)
plt.colorbar();
In [ ]:
fig, ax = plt.subplots(1,5,sharey=True)
fig.set_size_inches(12,6)
fig.tight_layout()
ax[0].imshow(I, cmap=plt.cm.viridis)
ax[0].set_xlabel('viridis')
ax[1].imshow(I, cmap=plt.cm.hot)
ax[1].set_xlabel('hot')
ax[2].imshow(I, cmap=plt.cm.magma)
ax[2].set_xlabel('magma')
ax[3].imshow(I, cmap=plt.cm.spectral)
ax[3].set_xlabel('spectral')
ax[4].imshow(I, cmap=plt.cm.gray)
ax[4].set_xlabel('gray')
In [ ]:
plt.imsave('Splash.png', I, cmap=plt.cm.gray) # Write the array I to a PNG file
Ipng = plt.imread('Splash.png') # Read in the PNG file
print("The original data has a min = {0:.2f} and a max = {1:.2f}".format(I.min(), I.max()))
print("The PNG file has a min = {0:.2f} and a max = {1:.2f}".format(Ipng.min(), Ipng.max()))
In [ ]:
X = np.linspace(-5, 5, 500)
Y = np.linspace(-5, 5, 500)
X, Y = np.meshgrid(X, Y) # turns two 1-d arrays (X, Y) into one 2-d grid
Z = np.sqrt(X**2+Y**2)+np.sin(X**2+Y**2)
Z.min(), Z.max(), Z.mean()
In [ ]:
from matplotlib.colors import LightSource
ls = LightSource(azdeg=0,altdeg=40)
shadedfig = ls.shade(Z,plt.cm.copper)
fig, ax = plt.subplots(1,3)
fig.set_size_inches(12,6)
fig.tight_layout()
ax[0].imshow(shadedfig)
contlevels = [1,2,Z.mean()]
ax[1].axis('equal')
ax[1].contour(Z,contlevels)
ax[2].imshow(shadedfig)
ax[2].contour(Z,contlevels);
In [ ]:
I2 = plt.imread('doctor5.png')
print("The image I2 has a shape [height,width] of {0}".format(I2.shape))
print("The image I2 is made up of data of type {0}".format(I2.dtype))
print("The image I2 has a maximum value of {0}".format(I2.max()))
print("The image I2 has a minimum value of {0}".format(I2.min()))
In [ ]:
plt.imshow(I2,cmap=plt.cm.gray);
In [ ]:
fig, ax = plt.subplots(1,4)
fig.set_size_inches(12,6)
fig.tight_layout()
# You can show just slices of the image - Rememeber: The origin is the upper left corner
ax[0].imshow(I2, cmap=plt.cm.gray)
ax[0].set_xlabel('Original')
ax[1].imshow(I2[0:300,0:100], cmap=plt.cm.gray)
ax[1].set_xlabel('[0:300,0:100]') # 300 rows, 100 columns
ax[2].imshow(I2[:,0:100], cmap=plt.cm.gray) # ":" = whole range
ax[2].set_xlabel('[:,0:100]') # all rows, 100 columns
ax[3].imshow(I2[:,::-1], cmap=plt.cm.gray);
ax[3].set_xlabel('[:,::-1]') # reverse the columns
In [ ]:
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)
fig.tight_layout()
CutLine = 300
ax[0].imshow(I2, cmap=plt.cm.gray)
ax[0].hlines(CutLine, 0, 194, color='b', linewidth=3)
ax[1].plot(I2[CutLine,:], color='b', linewidth=3)
ax[1].set_xlabel("X Value")
ax[1].set_ylabel("Pixel Value")
In [ ]:
from scipy import ndimage
In [ ]:
fig, ax = plt.subplots(1,5)
fig.set_size_inches(14,6)
fig.tight_layout()
ax[0].imshow(I2, cmap=plt.cm.gray)
I3 = ndimage.rotate(I2,45,cval=0.75) # cval is the value to set pixels outside of image
ax[1].imshow(I3, cmap=plt.cm.gray) # Rotate and reshape
I4 = ndimage.rotate(I2,45,reshape=False,cval=0.75) # Rotate and do not reshape
ax[2].imshow(I4, cmap=plt.cm.gray)
I5 = ndimage.shift(I2,(10,30),cval=0.75) # Shift image
ax[3].imshow(I5, cmap=plt.cm.gray)
I6 = ndimage.gaussian_filter(I2,5) # Blur image
ax[4].imshow(I6, cmap=plt.cm.gray);
ndimage
can do much more: http://scipy-lectures.github.io/advanced/image_processing/
In [ ]:
import astropy.io.fits as fits
In [ ]:
x = fits.open('bsg01.fits')
x.info()
In [ ]:
x[0].header
In [ ]:
xd = x[0].data
print("The image x has a shape [height,width] of {0}".format(xd.shape))
print("The image x is made up of data of type {0}".format(xd.dtype))
print("The image x has a maximum value of {0}".format(xd.max()))
print("The image x has a minimum value of {0}".format(xd.min()))
In [ ]:
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)
fig.tight_layout()
ax[0].imshow(xd,cmap=plt.cm.gray)
ax[1].hist(xd.flatten(),bins=20);
In [ ]:
CopyData = np.copy(xd)
CutOff = 40
mask = np.where(CopyData > CutOff)
CopyData[mask] = 50 # You can not just throw data away, you have to set it to something.
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)
fig.tight_layout()
ax[0].imshow(CopyData,cmap=plt.cm.gray)
ax[1].hist(CopyData.flatten(),bins=20);
In [ ]:
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)
fig.tight_layout()
ax[0].imshow(xd, cmap=plt.cm.gray)
# Open another file 'bsg02.fits'
y = fits.open('bsg02.fits')
yd = y[0].data
ax[1].imshow(yd, cmap=plt.cm.gray);
In [ ]:
fig, ax = plt.subplots(1,3)
fig.set_size_inches(12,6)
fig.tight_layout()
ax[0].imshow(xd, cmap=plt.cm.gray)
ax[1].imshow(yd, cmap=plt.cm.gray)
z = xd - yd # Subtract the images pixel by pixel
ax[2].imshow(z, cmap=plt.cm.gray);
In [ ]:
S = fits.open('SolarSpectra.fits')
S.info()
In [ ]:
Data = S[0].data
In [ ]:
Head = S[0].header
Head
In [ ]:
# The FITS header has the information to make an array of wavelengths
Start = Head['CRVAL1']
Number = Head['NAXIS1']
Delta = Head['CDELT1']
End = Start + (Number * Delta)
Wavelength = np.arange(Start,End,Delta)
In [ ]:
fig, ax = plt.subplots(2,1)
fig.set_size_inches(11,8.5)
fig.tight_layout()
# Full spectra
ax[0].plot(Wavelength, Data, color='b')
ax[0].set_ylabel("Flux")
ax[0].set_xlabel("Wavelength [angstroms]")
# Just the visible range with the hydrogen Balmer lines
ax[1].set_xlim(4000,7000)
ax[1].set_ylim(0.6,1.2)
ax[1].plot(Wavelength, Data, color='b')
ax[1].set_ylabel("Flux")
ax[1].set_xlabel("Wavelength [angstroms]")
H_Balmer = [6563,4861,4341,4102,3970,3889,3835,3646]
ax[1].vlines(H_Balmer,0,2, color='r', linewidth=3, alpha = 0.25)
In [ ]:
redfilter = plt.imread('sphereR.jpg')
redfilter.shape,redfilter.dtype
In [ ]:
redfilter = plt.imread('sphereR.jpg')[:,:,0]
redfilter.shape,redfilter.dtype
In [ ]:
plt.imshow(redfilter,cmap=plt.cm.gray);
In [ ]:
greenfilter = plt.imread('sphereG.jpg')[:,:,0]
bluefilter = plt.imread('sphereB.jpg')[:,:,0]
In [ ]:
fig, ax = plt.subplots(1,3)
fig.set_size_inches(12,3)
fig.tight_layout()
ax[0].set_title("Red Filter")
ax[1].set_title("Green Filter")
ax[2].set_title("Blue Filter")
ax[0].imshow(redfilter,cmap=plt.cm.gray)
ax[1].imshow(greenfilter,cmap=plt.cm.gray)
ax[2].imshow(bluefilter,cmap=plt.cm.gray);
In [ ]:
rgb = np.zeros((480,640,3),dtype='uint8')
print(rgb.shape, rgb.dtype)
plt.imshow(rgb,cmap=plt.cm.gray);
In [ ]:
rgb[:,:,0] = redfilter
rgb[:,:,1] = greenfilter
rgb[:,:,2] = bluefilter
In [ ]:
fig, ax = plt.subplots(1,4)
fig.set_size_inches(14,3)
fig.tight_layout()
ax[0].set_title("Red Filter")
ax[1].set_title("Green Filter")
ax[2].set_title("Blue Filter")
ax[3].set_title("All Filters Stacked")
ax[0].imshow(redfilter,cmap=plt.cm.gray)
ax[1].imshow(greenfilter,cmap=plt.cm.gray)
ax[2].imshow(bluefilter,cmap=plt.cm.gray)
ax[3].imshow(rgb,cmap=plt.cm.gray);
In [ ]:
print("The image rgb has a shape [height,width] of {0}".format(rgb.shape))
print("The image rgb is made up of data of type {0}".format(rgb.dtype))
print("The image rgb has a maximum value of {0}".format(rgb.max()))
print("The image rgb has a minimum value of {0}".format(rgb.min()))
In [ ]:
rgb[:,:,0] = redfilter * 1.5
plt.imshow(rgb)
In [ ]: