Multidimentional data - Matrices and Images


In [ ]:
%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt

from scipy import linalg

In [ ]:
plt.style.use('ggplot')
plt.rc('axes', grid=False)   # turn off the background grid for images

Let us work with the matrix: $ \left[ \begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right] $


In [ ]:
my_matrix = np.array([[1,2],[1,1]])

print(my_matrix.shape)

In [ ]:
print(my_matrix)

In [ ]:
my_matrix_transposed = np.transpose(my_matrix)

print(my_matrix_transposed)

In [ ]:
my_matrix_inverse = linalg.inv(my_matrix)

print(my_matrix_inverse)

numpy matrix multiply uses the dot() function:


In [ ]:
my_matrix_inverse.dot(my_matrix)

Caution the * will just multiply the matricies on an element-by-element basis:


In [ ]:
my_matrix_inverse * my_matrix_inverse

Solving system of linear equations

$$ \begin{array}{c} x + 2y = 4 \\ x + y = 3 \\ \end{array} \hspace{2cm} \left[ \begin{array}{cc} 1 & 2 \\ 1 & 1 \\ \end{array} \right] \left[ \begin{array}{c} x\\ y \end{array} \right] = \left[ \begin{array}{c} 4\\ 3\\ \end{array} \right] \hspace{2cm} {\bf A}x = {\bf b} \hspace{2cm} \left[ \begin{array}{c} x\\ y \end{array} \right] = \left[ \begin{array}{cc} 1 & 2 \\ 1 & 1 \\ \end{array} \right]^{-1} \left[ \begin{array}{c} 4\\ 3\\ \end{array} \right] = \left[ \begin{array}{c} 2\\ 1 \end{array} \right] $$

In [ ]:
A = np.array([[1,2],[1,1]])

print(A)

In [ ]:
b = np.array([[4],[3]])

print(b)

In [ ]:
# Solve by inverting A and then mulitply by b

linalg.inv(A).dot(b)

In [ ]:
# Cleaner looking

linalg.solve(A,b)

System of 3 equations example (Numpy):

$$ \begin{array}{c} x + 3y + 5z = 10 \\ 2x + 5y + z = 8 \\ 2x + 3y + 8z = 3 \\ \end{array} \hspace{3cm} \left[ \begin{array}{ccc} 1 & 3 & 5 \\ 2 & 5 & 1 \\ 2 & 3 & 8 \end{array} \right] \left[ \begin{array}{c} x\\ y\\ z \end{array} \right] = \left[ \begin{array}{c} 10\\ 8\\ 3 \end{array} \right] $$

In [ ]:
A = np.array([[1,3,5],[2,5,1],[2,3,8]])
b = np.array([[10],[8],[3]])

print(linalg.inv(A))

print(linalg.solve(A,b))

System of 3 equations example (SymPy) - Python's Symbolic Math Package


In [ ]:
import sympy as sym

AA = sym.Matrix([[1,3,5],[2,5,1],[2,3,8]])
bb = sym.Matrix([[10],[8],[3]])

print(AA**-1)

print(AA**-1 * bb)

SymPy is slower than NumPy


In [ ]:
%timeit AA**-1 * bb
%timeit linalg.solve(A,b)

Images are just 2-d arrays - imshow will display 2-d arrays as images


In [ ]:
print(A)

plt.imshow(A, interpolation='nearest', cmap=plt.cm.Blues);

Read in some data


In [ ]:
I = np.load("test_data.npy")    # load in a saved numpy array

In [ ]:
I.ndim, I.shape, I.dtype

In [ ]:
print("The minimum value of the array I is {0:.2f}".format(I.min()))
print("The maximum value of the array I is {0:.2f}".format(I.max()))
print("The mean value of the array I is {0:.2f}".format(I.mean()))
print("The standard deviation of the array I is {0:.2f}".format(I.std()))

In [ ]:
#flatten() collapses n-dimentional data into 1-d

plt.hist(I.flatten(),bins=30);

Math on images applies to every value (pixel)


In [ ]:
II = I + 8

print("The minimum value of the array II is {0:.2f}".format(II.min()))
print("The maximum value of the array II is {0:.2f}".format(II.max()))
print("The mean value of the array II is {0:.2f}".format(II.mean()))
print("The standard deviation of the array II is {0:.2f}".format(II.std()))

Show the image represenation of I with a colorbar


In [ ]:
plt.imshow(I, cmap=plt.cm.gray)
plt.colorbar();

In [ ]:
fig, ax = plt.subplots(1,5,sharey=True)

fig.set_size_inches(12,6)

fig.tight_layout()

ax[0].imshow(I, cmap=plt.cm.viridis)
ax[0].set_xlabel('viridis')

ax[1].imshow(I, cmap=plt.cm.hot)
ax[1].set_xlabel('hot')

ax[2].imshow(I, cmap=plt.cm.magma)
ax[2].set_xlabel('magma')

ax[3].imshow(I, cmap=plt.cm.spectral)
ax[3].set_xlabel('spectral')

ax[4].imshow(I, cmap=plt.cm.gray)
ax[4].set_xlabel('gray')

WARNING! Common image formats DO NOT preserve dynamic range of original data!!

  • Common image formats: jpg, gif, png, tiff
  • Common image formats will re-scale your data values to [0:1]
  • Common image formats are NOT suitable for scientific data!

In [ ]:
plt.imsave('Splash.png', I, cmap=plt.cm.gray)     # Write the array I to a PNG file

Ipng = plt.imread('Splash.png')                   # Read in the PNG file

print("The original data has a min = {0:.2f} and a max = {1:.2f}".format(I.min(), I.max()))

print("The PNG file has a min = {0:.2f} and a max = {1:.2f}".format(Ipng.min(), Ipng.max()))

Creating images from math


In [ ]:
X = np.linspace(-5, 5, 500)
Y = np.linspace(-5, 5, 500)

X, Y = np.meshgrid(X, Y)     # turns two 1-d arrays (X, Y) into one 2-d grid

Z = np.sqrt(X**2+Y**2)+np.sin(X**2+Y**2)

Z.min(), Z.max(), Z.mean()

Fancy Image Display


In [ ]:
from matplotlib.colors import LightSource

ls = LightSource(azdeg=0,altdeg=40)
shadedfig = ls.shade(Z,plt.cm.copper)

fig, ax = plt.subplots(1,3)

fig.set_size_inches(12,6)

fig.tight_layout()

ax[0].imshow(shadedfig)

contlevels = [1,2,Z.mean()]

ax[1].axis('equal')
ax[1].contour(Z,contlevels)

ax[2].imshow(shadedfig)
ax[2].contour(Z,contlevels);

Reading in images (imread) - Common Formats


In [ ]:
I2 = plt.imread('doctor5.png')

print("The image I2 has a shape [height,width] of {0}".format(I2.shape))
print("The image I2 is made up of data of type {0}".format(I2.dtype))
print("The image I2 has a maximum value of {0}".format(I2.max()))
print("The image I2 has a minimum value of {0}".format(I2.min()))

In [ ]:
plt.imshow(I2,cmap=plt.cm.gray);

Images are just arrays that can be sliced.

  • ### For common image formats the origin is the upper left hand corner

In [ ]:
fig, ax = plt.subplots(1,4)
fig.set_size_inches(12,6)

fig.tight_layout()

# You can show just slices of the image - Rememeber: The origin is the upper left corner

ax[0].imshow(I2, cmap=plt.cm.gray)
ax[0].set_xlabel('Original')

ax[1].imshow(I2[0:300,0:100], cmap=plt.cm.gray)
ax[1].set_xlabel('[0:300,0:100]')                 # 300 rows, 100 columns

ax[2].imshow(I2[:,0:100], cmap=plt.cm.gray)       # ":" = whole range
ax[2].set_xlabel('[:,0:100]')                     # all rows, 100 columns

ax[3].imshow(I2[:,::-1], cmap=plt.cm.gray);
ax[3].set_xlabel('[:,::-1]')                      # reverse the columns

In [ ]:
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)

fig.tight_layout()

CutLine = 300

ax[0].imshow(I2, cmap=plt.cm.gray)
ax[0].hlines(CutLine, 0, 194, color='b', linewidth=3)

ax[1].plot(I2[CutLine,:], color='b', linewidth=3)
ax[1].set_xlabel("X Value")
ax[1].set_ylabel("Pixel Value")

Simple image manipulation


In [ ]:
from scipy import ndimage

In [ ]:
fig, ax = plt.subplots(1,5)
fig.set_size_inches(14,6)

fig.tight_layout()

ax[0].imshow(I2, cmap=plt.cm.gray)

I3 = ndimage.rotate(I2,45,cval=0.75)               # cval is the value to set pixels outside of image
ax[1].imshow(I3, cmap=plt.cm.gray)                 # Rotate and reshape

I4 = ndimage.rotate(I2,45,reshape=False,cval=0.75) # Rotate and do not reshape
ax[2].imshow(I4, cmap=plt.cm.gray)

I5 = ndimage.shift(I2,(10,30),cval=0.75)           # Shift image      
ax[3].imshow(I5, cmap=plt.cm.gray)

I6 = ndimage.gaussian_filter(I2,5)                # Blur image
ax[4].imshow(I6, cmap=plt.cm.gray);

FITS file (Flexible Image Transport System) - Standard Astro File Format

  • FITS format preserves dynamic range of data
  • FITS format can include lists, tables, images, and combunations of different types of data

In [ ]:
import astropy.io.fits as fits

In [ ]:
x = fits.open('bsg01.fits')

x.info()

In [ ]:
x[0].header

In [ ]:
xd = x[0].data

print("The image x has a shape [height,width] of {0}".format(xd.shape))
print("The image x is made up of data of type {0}".format(xd.dtype))
print("The image x has a maximum value of {0}".format(xd.max()))
print("The image x has a minimum value of {0}".format(xd.min()))

In [ ]:
fig, ax = plt.subplots(1,2)

fig.set_size_inches(12,6)

fig.tight_layout()

ax[0].imshow(xd,cmap=plt.cm.gray)

ax[1].hist(xd.flatten(),bins=20);

You can use masks on images


In [ ]:
CopyData = np.copy(xd)

CutOff = 40

mask = np.where(CopyData > CutOff)
CopyData[mask] = 50                   # You can not just throw data away, you have to set it to something.

fig, ax = plt.subplots(1,2)

fig.set_size_inches(12,6)

fig.tight_layout()

ax[0].imshow(CopyData,cmap=plt.cm.gray)

ax[1].hist(CopyData.flatten(),bins=20);

You can add and subtract images


In [ ]:
fig, ax = plt.subplots(1,2)
fig.set_size_inches(12,6)

fig.tight_layout()

ax[0].imshow(xd, cmap=plt.cm.gray)

# Open another file 'bsg02.fits'

y = fits.open('bsg02.fits')
yd = y[0].data

ax[1].imshow(yd, cmap=plt.cm.gray);

The two images above may look the same but they are not! Subtracting the two images reveals the truth.


In [ ]:
fig, ax = plt.subplots(1,3)
fig.set_size_inches(12,6)

fig.tight_layout()

ax[0].imshow(xd, cmap=plt.cm.gray)
ax[1].imshow(yd, cmap=plt.cm.gray)

z = xd - yd                          # Subtract the images pixel by pixel

ax[2].imshow(z, cmap=plt.cm.gray);

FITS Tables - An astronomical example


In [ ]:
S = fits.open('SolarSpectra.fits')

S.info()

In [ ]:
Data = S[0].data

In [ ]:
Head = S[0].header
Head

In [ ]:
# The FITS header has the information to make an array of wavelengths

Start = Head['CRVAL1']
Number = Head['NAXIS1']
Delta  = Head['CDELT1']

End = Start + (Number * Delta)

Wavelength = np.arange(Start,End,Delta)

In [ ]:
fig, ax = plt.subplots(2,1)
fig.set_size_inches(11,8.5)

fig.tight_layout()

# Full spectra

ax[0].plot(Wavelength, Data, color='b')
ax[0].set_ylabel("Flux")
ax[0].set_xlabel("Wavelength [angstroms]")

# Just the visible range with the hydrogen Balmer lines

ax[1].set_xlim(4000,7000)
ax[1].set_ylim(0.6,1.2)
ax[1].plot(Wavelength, Data, color='b')
ax[1].set_ylabel("Flux")
ax[1].set_xlabel("Wavelength [angstroms]")

H_Balmer = [6563,4861,4341,4102,3970,3889,3835,3646]

ax[1].vlines(H_Balmer,0,2, color='r', linewidth=3, alpha = 0.25)

Pseudocolor - All color astronomy images are fake.

Color images are composed of three 2-d images:

JPG images are 3-d, even grayscale images


In [ ]:
redfilter = plt.imread('sphereR.jpg')

redfilter.shape,redfilter.dtype

We just want to read in one of the three channels


In [ ]:
redfilter = plt.imread('sphereR.jpg')[:,:,0]

redfilter.shape,redfilter.dtype

In [ ]:
plt.imshow(redfilter,cmap=plt.cm.gray);

In [ ]:
greenfilter = plt.imread('sphereG.jpg')[:,:,0]
bluefilter = plt.imread('sphereB.jpg')[:,:,0]

In [ ]:
fig, ax = plt.subplots(1,3)
fig.set_size_inches(12,3)

fig.tight_layout()

ax[0].set_title("Red Filter")
ax[1].set_title("Green Filter")
ax[2].set_title("Blue Filter")

ax[0].imshow(redfilter,cmap=plt.cm.gray)
ax[1].imshow(greenfilter,cmap=plt.cm.gray)
ax[2].imshow(bluefilter,cmap=plt.cm.gray);

Need to create a blank 3-d array to hold all of the images


In [ ]:
rgb = np.zeros((480,640,3),dtype='uint8')

print(rgb.shape, rgb.dtype)

plt.imshow(rgb,cmap=plt.cm.gray);

Fill the array with the filtered images


In [ ]:
rgb[:,:,0] = redfilter
rgb[:,:,1] = greenfilter
rgb[:,:,2] = bluefilter

In [ ]:
fig, ax = plt.subplots(1,4)
fig.set_size_inches(14,3)

fig.tight_layout()

ax[0].set_title("Red Filter")
ax[1].set_title("Green Filter")
ax[2].set_title("Blue Filter")
ax[3].set_title("All Filters Stacked")

ax[0].imshow(redfilter,cmap=plt.cm.gray)
ax[1].imshow(greenfilter,cmap=plt.cm.gray)
ax[2].imshow(bluefilter,cmap=plt.cm.gray)
ax[3].imshow(rgb,cmap=plt.cm.gray);

In [ ]:
print("The image rgb has a shape [height,width] of {0}".format(rgb.shape))
print("The image rgb is made up of data of type {0}".format(rgb.dtype))
print("The image rgb has a maximum value of {0}".format(rgb.max()))
print("The image rgb has a minimum value of {0}".format(rgb.min()))

In [ ]:
rgb[:,:,0] = redfilter * 1.5

plt.imshow(rgb)

In [ ]: