\[ \textbf{$\Sigma$} = \left[ \begin{array}{cccccc}
\sigma_{1,1}^2 & \sigma_{1,2} & \sigma_{1,3} & \sigma_{1,4} & \sigma_{1,5} & \sigma_{1,6} \\
\sigma_{2,1} & \sigma_{2,2}^2 & \sigma_{2,3} & \sigma_{2,4} & \sigma_{2,5} & \sigma_{2,6} \\
\sigma_{3,1} & \sigma_{3,2} & \sigma_{3,3}^2 & \sigma_{3,4} & \sigma_{3,5} & \sigma_{3,6} \\
\sigma_{4,1} & \sigma_{4,2} & \sigma_{4,3} & \sigma_{4,4}^2 & \sigma_{4,5} & \sigma_{4,6} \\
\sigma_{5,1} & \sigma_{5,2} & \sigma_{5,3} & \sigma_{5,4} & \sigma_{5,5}^2 & \sigma_{5,6} \\
\sigma_{6,1} & \sigma_{6,2} & \sigma_{6,3} & \sigma_{6,4} & \sigma_{6,5} & \sigma_{6,6}^2
\end{array} \right],\]
\[ \textbf{$\Lambda$} = \left[ \begin{array}{cc}
\lambda_{1,1} & \lambda_{1,2} \\
\lambda_{2,1} & \lambda_{2,2} \\
\lambda_{3,1} & \lambda_{3,2}
\end{array} \right],\]
\[ \textbf{$\Psi$} = \left[ \begin{array}{cc}
\psi_{1,1} & \psi_{1,2} \\
\psi_{2,1} & \psi_{2,2}
\end{array} \right],\]
\[ \textbf{$\Lambda^\prime$} = \left[ \begin{array}{cc}
\lambda_{1,1} & \lambda_{2,1} & \lambda_{3,1} \\
\lambda_{1,2} & \lambda_{2,2} & \lambda_{3,2}
\end{array} \right],\]
\[ \textbf{$\Theta$} = \left[ \begin{array}{cccccc}
\theta_{1,1} & 0 & 0 & 0 & 0 & 0 \\
0 & \theta_{2,2} & 0 & 0 & 0 & 0 \\
0 & 0 & \theta_{3,3} & 0 & 0 & 0 \\
0 & 0 & 0 & \theta_{4,4} & 0 & 0 \\
0 & 0 & 0 & 0 & \theta_{5,5} & 0 \\
0 & 0 & 0 & 0 & 0 & \theta_{6,6}
\end{array} \right].\]
### Fundamental SEM equation
$$
\Sigma = \Lambda \Psi \Lambda' + \Theta \tag{1}
$$
## Unidimensional Measurement Model