In [1]:
a = [1.5915, 2.756559, 0]
b = [1.5915, -2.756559, 0]
c = [0, 0, 7.7258]
Solution:
a = $|\mathbf{a}|$
b = $|\mathbf{b}|$
c = $|\mathbf{c}|$
$\alpha$ = $cos^{-1}(\frac{\mathbf{b}.\mathbf{c}}{|\mathbf{b}||\mathbf{c}|})$
$\beta$ = $cos^{-1}(\frac{\mathbf{a}.\mathbf{c}}{|\mathbf{a}||\mathbf{c}|})$
$\gamma$ = $cos^{-1}(\frac{\mathbf{a}.\mathbf{b}}{|\mathbf{a}||\mathbf{b}|})$
In [2]:
import numpy as np
from math import acos, degrees
a_length = np.linalg.norm(a)
b_length = np.linalg.norm(b)
c_length = np.linalg.norm(c)
alpha_angle = degrees(acos(np.dot(b, c) / (b_length * c_length)))
beta_angle = degrees(acos(np.dot(a, c) / (a_length * c_length)))
gamma_angle = degrees(acos(np.dot(a, b) / (a_length * b_length)))
print "The lattice parameters are {%.4f, %.4f, %.4f, %.4f, %.4f, %.4f}." % (a_length, b_length, c_length, alpha_angle, beta_angle, gamma_angle)
Solution: The cell system is hexagonal.