1. Import the necessary packages to read in the data, plot, and create a linear regression model


In [6]:
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
%matplotlib inline
plt.style.use('fivethirtyeight')

2. Read in the hanford.csv file


In [14]:
df = pd.read_csv("~/Documents/LEDE/algorithms/class6/data/hanford.csv")

In [17]:
df


Out[17]:
County Exposure Mortality
0 Umatilla 2.49 147.1
1 Morrow 2.57 130.1
2 Gilliam 3.41 129.9
3 Sherman 1.25 113.5
4 Wasco 1.62 137.5
5 HoodRiver 3.83 162.3
6 Portland 11.64 207.5
7 Columbia 6.41 177.9
8 Clatsop 8.34 210.3

3. Calculate the basic descriptive statistics on the data


In [15]:
df.describe()


Out[15]:
Exposure Mortality
count 9.000000 9.000000
mean 4.617778 157.344444
std 3.491192 34.791346
min 1.250000 113.500000
25% 2.490000 130.100000
50% 3.410000 147.100000
75% 6.410000 177.900000
max 11.640000 210.300000

4. Calculate the coefficient of correlation (r) and generate the scatter plot. Does there seem to be a correlation worthy of investigation?


In [22]:
r = df.corr()
r**2


Out[22]:
Exposure Mortality
Exposure 1.000000 0.858115
Mortality 0.858115 1.000000

In [16]:
df.plot(kind='scatter', x='Exposure', y='Mortality')


Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x10b5605c0>

5. Create a linear regression model based on the available data to predict the mortality rate given a level of exposure


In [23]:
lm = smf.ols(formula='Mortality~Exposure',data=df).fit()

In [24]:
lm.params


Out[24]:
Intercept    114.715631
Exposure       9.231456
dtype: float64

In [25]:
intercept, slope = lm.params

6. Plot the linear regression line on the scatter plot of values. Calculate the r^2 (coefficient of determination)


In [26]:
df.plot(kind='scatter',x='Exposure',y='Mortality')
plt.plot(df['Exposure'],slope*df['Exposure']+intercept,"-")


Out[26]:
[<matplotlib.lines.Line2D at 0x10b618358>]

7. Predict the mortality rate (Cancer per 100,000 man years) given an index of exposure = 10


In [27]:
def mortality_predictor(exposure):
    return slope*float(exposure)+intercept

In [29]:
mortality_predictor(10)


Out[29]:
207.03019352841989

In [ ]: