1. Import the necessary packages to read in the data, plot, and create a linear regression model


In [2]:
import pandas as pd
%matplotlib inline

In [3]:
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf

2. Read in the hanford.csv file


In [4]:
df = pd.read_csv("hanford.csv")


In [5]:
df.head()


Out[5]:
County Exposure Mortality
0 Umatilla 2.49 147.1
1 Morrow 2.57 130.1
2 Gilliam 3.41 129.9
3 Sherman 1.25 113.5
4 Wasco 1.62 137.5

3. Calculate the basic descriptive statistics on the data


In [6]:
df.describe()


Out[6]:
Exposure Mortality
count 9.000000 9.000000
mean 4.617778 157.344444
std 3.491192 34.791346
min 1.250000 113.500000
25% 2.490000 130.100000
50% 3.410000 147.100000
75% 6.410000 177.900000
max 11.640000 210.300000

4. Calculate the coefficient of correlation (r) and generate the scatter plot. Does there seem to be a correlation worthy of investigation?


In [7]:
df.corr()


Out[7]:
Exposure Mortality
Exposure 1.000000 0.926345
Mortality 0.926345 1.000000

There seems to be a highly positive correlation between both variables, as shown by the coefficient of correlation, which equals 0.92.


In [8]:
df.plot(kind='scatter', x='Exposure', y='Mortality')


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x10d570320>

5. Create a linear regression model based on the available data to predict the mortality rate given a level of exposure


In [9]:
lm = smf.ols(formula="Mortality~Exposure",data=df).fit()

In [17]:
lm.params


Out[17]:
Intercept    114.715631
Exposure       9.231456
dtype: float64

In [18]:
intercept, slope = lm.params

In [19]:
def mortality_rate(exposure):
    for item in df['Exposure']:
        mortality = exposure * slope + intercept
    return mortality

In [20]:
mortality_rate(3)


Out[20]:
142.4099996330761

6. Plot the linear regression line on the scatter plot of values. Calculate the r^2 (coefficient of determination)


In [13]:
ax = df.plot(kind='scatter', x= 'Exposure', y='Mortality')
plt.plot(df["Exposure"],slope*df["Exposure"]+intercept,"-",color="green")


Out[13]:
[<matplotlib.lines.Line2D at 0x10d632940>]

In [14]:
det_corr = (df.corr())* (df.corr())

In [15]:
det_corr


Out[15]:
Exposure Mortality
Exposure 1.000000 0.858115
Mortality 0.858115 1.000000

7. Predict the mortality rate (Cancer per 100,000 man years) given an index of exposure = 10


In [16]:
mortality_rate(10)


Out[16]:
207.03019352841989