1. Import the necessary packages to read in the data, plot, and create a linear regression model


In [2]:
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt # package for doing plotting (necessary for adding the line)
import statsmodels.formula.api as smf # package we'll be using for linear regression

2. Read in the hanford.csv file


In [3]:
df = pd.read_csv('hanford.csv')

3. Calculate the basic descriptive statistics on the data


In [5]:
df.describe()


Out[5]:
Exposure Mortality
count 9.000000 9.000000
mean 4.617778 157.344444
std 3.491192 34.791346
min 1.250000 113.500000
25% 2.490000 130.100000
50% 3.410000 147.100000
75% 6.410000 177.900000
max 11.640000 210.300000

4. Calculate the coefficient of correlation (r) and generate the scatter plot. Does there seem to be a correlation worthy of investigation?


In [6]:
df.corr()


Out[6]:
Exposure Mortality
Exposure 1.000000 0.926345
Mortality 0.926345 1.000000

5. Create a linear regression model based on the available data to predict the mortality rate given a level of exposure


In [9]:
lm = smf.ols(formula="Mortality~Exposure",data=df).fit() #notice the formula regresses Y on X (Y~X)
intercept,slope=lm.params
lm.params


Out[9]:
Intercept    114.715631
Exposure       9.231456
dtype: float64

6. Plot the linear regression line on the scatter plot of values. Calculate the r^2 (coefficient of determination)


In [10]:
df.plot(kind='scatter', x='Exposure', y ='Mortality')
plt.plot(df["Exposure"],slope*df["Exposure"]+intercept,"-",color="red")


Out[10]:
[<matplotlib.lines.Line2D at 0x11281be80>]

7. Predict the mortality rate (Cancer per 100,000 man years) given an index of exposure = 10


In [11]:
#y=mx+b
mortality=intercept*10+114.715631

In [12]:
mortality


Out[12]:
1261.8719392078594

In [ ]: