This is a notebook to implement Clark's CLEAN
method. See $\S$ 6.3 for details on the method. The psuedo-code for the algorithm is presented below. The goal of this assignment is to implement the major cycle and PSF selection function. The minor cycle uses Högbom's method which has all ready been written. An example of Högbom's CLEAN
method can be found in Chapter 6. Code needs to be added to the functions clark()
and selectSubPSF()
in order for the notebook to work. Marks are given based completeness and generality.
Psuedo-code:
$\textbf{input: } I^{D}(l,m), \ \textrm{PSF}(l,m), \ \gamma, \ f_{\textrm{thresh}}, \ N$
$\textbf{initialize: } S^{\textrm{model}} \leftarrow \{\}, \ I^{\textrm{res}} \leftarrow I^{D}, \ i \leftarrow 0, \ (\textrm{PSF}_{\textrm{sub}}(l,m), \ R_{\textrm{PSF}}) \leftarrow g(\textrm{PSF}(l,m))$
$\textbf{while} \ \textrm{any}(I^{\textrm{res}} > f_{\textrm{thresh}}) \ \textrm{or} \ i \leq N \ \textbf{do:} \quad [\textrm{Major Cycle}]$
$\qquad l_{\textrm{max}}, m_{\textrm{max}} \leftarrow \underset{l,m}{\operatorname{argmax}} I^{\textrm{res}}(l,m)$
$\qquad f_{\textrm{max}} \leftarrow I^{D}(l_{\textrm{max}}, m_{\textrm{max}})$
$\qquad S^{\textrm{model}}_{\textrm{partial}} \leftarrow \textrm{Hogbom}(I^{\textrm{res}}, \ \textrm{PSF}_{\textrm{sub}}, \ \gamma, \ f_{\textrm{max}} \cdot R_{\textrm{PSF}}) \quad [\textrm{Minor Cycle}]$
$\qquad V^{\textrm{model}}_{\textrm{partial}} \leftarrow \mathscr{F}\{S^{\textrm{model}}_{\textrm{partial}}\}, V^S \leftarrow \mathscr{F}\{\textrm{PSF}\}$
$\qquad I^{\textrm{res}} \leftarrow I^{\textrm{res}} - \mathscr{F}^{-1}\{V^S \cdot V^{\textrm{model}}_{\textrm{partial}}\}$
$\qquad S^{\textrm{model}} \leftarrow S^{\textrm{model}} + S^{\textrm{model}}_{\textrm{partial}}$
$\qquad i \leftarrow i +1$
$\textbf{ouput: } S^{\textrm{model}}, I^{\textrm{res}}$
In [ ]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy import optimize
from astropy.io import fits
import aplpy
#Disable astropy/aplpy logging
import logging
logger0 = logging.getLogger('astropy')
logger0.setLevel(logging.CRITICAL)
logger1 = logging.getLogger('aplpy')
logger1.setLevel(logging.CRITICAL)
In [ ]:
def subtractPSF(img, psf, l, m, flux, gain):
"""Subtract the PSF (attenuated by the gain and flux) centred at (l,m) from an image"""
#get the half lengths of the PSF
if (psf.shape[0] % 2 == 0): psfMidL = psf.shape[0]/2 #even
else: psfMidL = (psf.shape[0]+1)/2 #odd
if (psf.shape[1] % 2 == 0): psfMidM = psf.shape[1]/2 #even
else: psfMidM = (psf.shape[1]+1)/2 #odd
#determine limits of sub-images
#starting m
if m-psfMidM < 0:
subM0 = 0
subPSFM0 = psfMidM-m
else:
subM0 = m-psfMidM
subPSFM0 = 0
#starting l
if l-psfMidL < 0:
subL0 = 0
subPSFL0 = psfMidL-l
else:
subL0 = l-psfMidL
subPSFL0 = 0
#ending m
if img.shape[1] > m+psfMidM:
subM1 = m+psfMidM
subPSFM1 = psf.shape[1]
else:
subM1 = img.shape[1]
subPSFM1 = psfMidM + (img.shape[1]-m)
#ending l
if img.shape[0] > l+psfMidL:
subL1 = l+psfMidL
subPSFL1 = psf.shape[0]
else:
subL1 = img.shape[0]
subPSFL1 = psfMidL + (img.shape[0]-l)
#select subset of image
#subImg = img[subL0:subL1, subM0:subM1]
#select subset of PSF
subPSF = psf[subPSFL0:subPSFL1, subPSFM0:subPSFM1]
#subtract PSF centred on (l,m) position
img[subL0:subL1, subM0:subM1] -= flux * gain * psf[subPSFL0:subPSFL1, subPSFM0:subPSFM1]
return img
In [ ]:
def gauss2D(x, y, amp, meanx, meany, sigmax, sigmay):
"""2D Gaussian Function"""
gx = -(x - meanx)**2/(2*sigmax**2)
gy = -(y - meany)**2/(2*sigmay**2)
return amp * np.exp( gx + gy)
def err(p, xx, yy, data):
"""Error function for least-squares fitting"""
return gauss2D(xx.flatten(), yy.flatten(), *p) - data.flatten()
def idealPSF(psfImg):
"""Determine the ideal PSF size based on the observing PSF doing a simple 2D Gaussian least-squares fit"""
xx, yy = np.meshgrid(np.arange(0, psfImg.shape[0]), np.arange(0, psfImg.shape[1]))
# Initial estimate: PSF should be amplitude 1, and usually imaging over sample the PSF by 3-5 pixels
params0 = 1., psfImg.shape[0]/2., psfImg.shape[1]/2., 3., 3.
params, pcov, infoDict, errmsg, sucess = optimize.leastsq(err, params0, \
args=(xx.flatten(), yy.flatten(), psfImg.flatten()), full_output=1)
#fwhm = [2.*np.sqrt(2.*np.log(2.)) * params[3], 2.*np.sqrt(2.*np.log(2.)) * params[4]]
return params
In [ ]:
def restoreImg(skyModel, residImg, params):
"""Generate a restored image from a deconvolved sky model, residual image, ideal PSF params"""
mdlImg = np.zeros_like(residImg)
for l,m, flux in skyModel:
mdlImg[l,m] += flux
#generate an ideal PSF image
psfImg = np.zeros_like(residImg)
xx, yy = np.meshgrid(np.arange(0, psfImg.shape[0]), np.arange(0, psfImg.shape[1]))
psfImg = gauss2D(xx, yy, params[0], params[1], params[2], params[3], params[4])
#convolve ideal PSF with model image
sampFunc = np.fft.fft2(psfImg) #sampling function
mdlVis = np.fft.fft2(mdlImg) #sky model visibilities
sampMdlVis = sampFunc * mdlVis #sampled sky model visibilities
convImg = np.abs(np.fft.fftshift(np.fft.ifft2(sampMdlVis))) + residImg #sky model convolved with PSF
#return mdlImg + residImg
return convImg
In [ ]:
def hogbom(dirtyImg, psfImg, gain, niter, fthresh):
"""Implementation of Hogbom's CLEAN method
inputs:
dirtyImg: 2-D numpy array, dirty image
psfImg: 2-D numpy array, PSF
gain: float, gain factor, 0 < gain < 1
niter: int, maximum number of iterations to halt deconvolution
fthresh: flaot, maximum flux threshold to halt deconvolution
outputs:
residImg: 2-D numpy array, residual image
skyModel: list of sky model components, each component is a list [l, m, flux]
"""
#Initalization
skyModel = [] #initialize empty model
residImg = np.copy(dirtyImg) #copy the dirty image to the initial residual image
i = 0 #number of iterations
print '\tMinor Cycle: fthresh: %f'%fthresh
#CLEAN iterative loop
while np.max(residImg) > fthresh and i < niter:
lmax, mmax = np.unravel_index(residImg.argmax(), residImg.shape) #get pixel position of maximum value
fmax = residImg[lmax, mmax] #flux value of maximum pixel
#print 'iter %i, (l,m):(%i, %i), flux: %f'%(i, lmax, mmax, fmax)
residImg = subtractPSF(residImg, psfImg, lmax, mmax, fmax, gain)
skyModel.append([lmax, mmax, gain*fmax])
i += 1
return residImg, skyModel
In [ ]:
def selectSubPSF(psfImg):
"""Select out a central region of the PSF for the Hogbom minor cycle,
and compute the ratio between the main lobe and highest sidelobe
There are a number of ways to implement this function. A general method
would determine where the first sidelobe is, and select out a region of
the PSF which includes those sidelobes. A simple method would be to hard-code
the size of the sub-image. Marks will be given based on how general the
function is.
inputs:
psfImg: 2-D numpy array, PSF
outputs:
subPsfImg: 2-D numpy array, subset of the PSF image which contains the main lobe out to the
largest sidelobe.
peakRatio: float, peakRatio < 1, ratio of the largest sidelobe to the main lobe
"""
#ADD CODE HERE
#return sub-PSF and ratio
return subPsfImg, peakRatio
In [ ]:
def clark(dirtyImg, psfImg, gain, niter, fthresh):
"""Implementation of Clark's CLEAN method
inputs:
dirtyImg: 2-D numpy array, dirty image
psfImg: 2-D numpy array, PSF
gain: float, gain factor, 0 < gain < 1
niter: int, maximum number of iterations to halt deconvolution
fthresh: flaot, maximum flux threshold to halt deconvolution
outputs:
residImg: 2-D numpy array, residual image
skyModel: list of sky model components, each component is a list [l, m, flux]
"""
#Initalization
skyModel = [] #initialize empty model
residImg = np.copy(dirtyImg) #copy the dirty image to the initial residual image
i = 0 #number of iterations
#select subset of PSF
subPsfImg, peakRatio = selectSubPSF(psfImg) #ADD CODE: this function needs to be written
#CLEAN iterative Major cycle
while np.max(residImg) > fthresh and i < niter:
#ADD CODE: get flux and pixel position of maximum value
#ADD CODE: minor cycle, run partial Hogbom, return partial sky model
#ADD CODE: Fourier transform partial sky model to model visibilities
#ADD CODE: compute sampling function from PSF
#ADD CODE: subtract sampled model image from the residual image
#ADD CODE: update full sky model
i += 1
return residImg, skyModel
In [ ]:
#input parameters
gain = 0.1 #loop gain, range: 0 < gain < 1
niter = 20 #number of loop iterations
fthresh = 2.5 #minimum flux threshold to deconvolve
In [ ]:
#input images: dirty, PSF
#assuming unpolarized, single frequency image
fh = fits.open('data/KAT-7_6h60s_dec-30_10MHz_10chans_uniform_n100-dirty.fits')
dirtyImg = fh[0].data[0,0]
fh = fits.open('data/KAT-7_6h60s_dec-30_10MHz_10chans_uniform_n100-psf.fits')
psfImg = fh[0].data[0,0]
idealPSFparams = idealPSF(psfImg) #compute ideal PSF parameters
In [ ]:
#run deconvolution
residImg, skyModel = clark(dirtyImg, psfImg, gain, niter, fthresh)
In [ ]:
#plot the dirty image
fig = plt.figure(figsize=(8,8))
plt.imshow(dirtyImg)
plt.title('Dirty Image')
plt.colorbar()
In [ ]:
#plot the residual image
fig = plt.figure(figsize=(8,8))
plt.imshow(residImg)
plt.title('Residual Image')
plt.colorbar()
In [ ]:
#plot the restored image
restImg = restoreImg(skyModel, residImg, idealPSFparams)
fig = plt.figure(figsize=(8,8))
plt.imshow(restImg)
plt.title('Restored Image')
plt.colorbar()