In [1]:
# importing
import numpy as np
from scipy import signal
import scipy as sp
import matplotlib.pyplot as plt
import matplotlib
# showing figures inline
%matplotlib inline
In [2]:
# plotting options
font = {'size' : 30}
plt.rc('font', **font)
plt.rc('text', usetex=True)
matplotlib.rc('figure', figsize=(30, 8) )
In [3]:
########################
# acf estimator
########################
def est_acf(y, est_type):
"""
estimates acf given a number of observation
Remark: signal is assumed to be starting from 0 to length(y)-1
IN: observations y, est_type (biased / unbiased)
OUT: estimated acf, centered around 0
"""
N = np.size( y )
r = np.zeros_like( y )
# loop lags of acf
for k in np.arange(0, N):
temp = np.sum( y[k:N] * np.conjugate(y[0:(N-k)]) )
# type of estimator
if est_type == 'biased':
r[k] = temp/N
elif est_type == 'unbiased':
r[k] = temp/(N-k)
# find values for negative indices
r_reverse = np.conjugate(r[::-1])
return np.append(r_reverse[0:len(r)-1], r)
In [4]:
########################
# periodogram estimator
########################
def find_periodogram(y, omega):
"""
estimates periodogram out of the given observation at the frequencies specified in omega
IN: observation y, frequencies
OUT: psd estimator
"""
N = len(y)
per = np.zeros(len(omega), dtype=complex)
for p in np.arange(0, N):
per += y[p] * np.exp( -1j * omega * (p+1) )
per = ( abs(per)**2 )/ N
return per
########################
# correlogram estimator
########################
def find_correlogram(r, omega):
"""
estimates correlogram out of the given acf at the frequencies specified in omega
Remark: acf is assumed to be centered around 0
IN: acf r, frequencies
OUT: psd
"""
corr = np.zeros(len(omega), dtype=complex)
N = (len(r)+1)// 2
# adding all terms
for p in np.arange( -(N-1), (N-1)+1 ):
corr += r[ p + (N-1) ] * np.exp( -1j * omega * p )
# since there are minor numerical issues, resulting in negligible imaginary part, only real part is returned
return np.real( corr )
In [10]:
# parameters: number of samples and according length of acf
N = int( 1e2 )
N_acf_range = np.arange( - N + 1, N, 1 )
# number of realizations for averaging
N_real = int( 1e2 )
# number of freq. points and freq. range
N_freq = 512
Ome = np.linspace(-np.pi, np.pi, N_freq)
# filtering noise?!
filtered = 1
In [11]:
# initialize arrays for psd
psd_noise_per = np.empty( [ N_real, N_freq ] )
psd_noise_cor_biased = np.empty( [ N_real, N_freq ] )
psd_noise_cor_unbiased = np.empty( [ N_real, N_freq ] )
# avtivate parameter "filtered" in parameters if you like to see filtered noise
if filtered == 1:
# filter parameters
cutoff_freq = 1.0/4.0
ripple_db = 60 # ripples and transition width of the filter
width = 1 / 5.0
N_filter, beta = signal.kaiserord(ripple_db, width) # find filter order and beta parameter
taps = signal.firwin( N_filter, cutoff=cutoff_freq, window=('kaiser', beta))
# loop for realizations
for _k in range( N_real ):
# generate noise
y = np.sqrt(2) * np.random.normal( 0.0, 1.0, N )
# activate to have filtered noise
if filtered == 1:
y = signal.lfilter( taps, 1.0, y )
y /= np.linalg.norm( y )
# find acf estimations
acf_biased = est_acf( y, 'biased')
acf_unbiased = est_acf( y, 'unbiased')
# find periodogram by simple fft and abs()**2
psd_noise_per[ _k, :] = find_periodogram( y, Ome)
psd_noise_cor_biased[ _k, :] = find_correlogram( acf_biased, Ome)
psd_noise_cor_unbiased[ _k, :] = find_correlogram( acf_unbiased, Ome)
# get mean and std along realizations
psd_noise_per_average = psd_noise_per.mean( axis=0 )
psd_noise_cor_biased_average = psd_noise_cor_biased.mean( axis=0 )
psd_noise_cor_unbiased_average = psd_noise_cor_unbiased.mean( axis=0 )
psd_noise_per_std = psd_noise_per.std( axis=0 )
psd_noise_cor_biased_std = psd_noise_cor_biased.std( axis=0 )
psd_noise_cor_unbiased_std = psd_noise_cor_unbiased.std( axis=0 )
In [12]:
plt.subplot(131)
plt.plot(Ome, psd_noise_per_average )
plt.plot(Ome, psd_noise_per_average - psd_noise_per_std)
plt.plot(Ome, psd_noise_per_average + psd_noise_per_std)
plt.grid(True);
plt.xlabel('$\Omega$'); plt.ylabel('$\hat{\Phi}_p(\Omega)$')
plt.subplot(132)
plt.plot(Ome, psd_noise_cor_biased_average, label='$L=N$')
plt.plot(Ome, psd_noise_cor_biased_average - psd_noise_cor_biased_std)
plt.plot(Ome, psd_noise_cor_biased_average + psd_noise_cor_biased_std)
plt.grid(True); plt.legend(loc='upper right')
plt.xlabel('$\Omega$'); plt.ylabel('$\hat{\Phi}_c(\Omega)$')
plt.subplot(133)
plt.plot(Ome, psd_noise_cor_unbiased_average, label='$L=N-k$')
plt.plot(Ome, psd_noise_cor_unbiased_average - psd_noise_cor_unbiased_std)
plt.plot(Ome, psd_noise_cor_unbiased_average + psd_noise_cor_unbiased_std)
plt.xlabel('$\Omega$'); plt.ylabel('$\hat{\Phi}_c(\Omega)$')
plt.grid(True); plt.legend(loc='upper right')
Out[12]:
Note:
In [ ]: