In [1]:
# importing
import numpy as np
from scipy import signal
import scipy as sp
import matplotlib.pyplot as plt
import matplotlib
# showing figures inline
%matplotlib inline
In [2]:
# plotting options
font = {'size' : 30}
plt.rc('font', **font)
plt.rc('text', usetex=True)
matplotlib.rc('figure', figsize=(30, 8) )
In [3]:
########################
# periodogram estimator
########################
def find_periodogram(y, omega):
"""
estimates periodogram out of the given observation at the frequencies specified in omega
IN: observation y, frequencies
OUT: psd estimator
"""
N = len(y)
per = np.zeros(len(omega), dtype=complex)
for p in np.arange(0, N):
per += y[p] * np.exp( -1j * omega * (p+1) )
per = ( abs(per)**2 )/ N
return per
########################
# Welch periodogram estimator
########################
def find_welch_estimate(y, M, O, omega, window=[]):
"""
estimates periodogram out of the given observation at the frequencies specified in omega
using Welch's method
IN: observation y, group size M, overlap O, frequencies Omega,
window of length M chosen as rect if not specified otherwise
OUT: psd estimator
"""
N = len(y)
K = int( N / (M-O) )
per = np.zeros(len(omega))
if window==[]:
window = np.ones(M)
window = window / (1.0/M * np.sum(window**2))
# loop for segments
k = 0
while k<K-1:
yk = y[ k*(M-O) : (k*(M-O)+M) ] # mind that the upper limit is not included
yk = yk * window
Yk = find_periodogram(yk, omega)
per = 1.0/(k+1) * ( k*per + Yk )
k += 1
return per
In [4]:
# parameters: number of samples and according length of acf
N = int( 1e2 )
N_range = np.arange( 0, N )
# width of segments and overlap
M = N // 10
O = M // 2
# number of realizations for averaging
N_real = int( 1e2 )
# number of freq. points and freq. range
N_freq = 512
Ome = np.linspace(-np.pi, np.pi, N_freq)
# filtering noise?!
filtered = 1
In [5]:
# initialize arrays for psd
psd_noise_per = np.empty( [ N_real, N_freq ], dtype=float )
psd_noise_welch = np.empty( [ N_real, N_freq ], dtype=float )
psd_sin_per = np.empty( [ N_real, N_freq ], dtype=float )
psd_sin_welch = np.empty( [ N_real, N_freq ], dtype=float )
# avtivate parameter "filtered" in parameters if you like to see filtered noise
if filtered == 1:
# filter parameters
cutoff_freq = 1.0/4.0
ripple_db = 60 # ripples and transition width of the filter
width = 1 / 5.0
N_filter, beta = signal.kaiserord(ripple_db, width) # find filter order and beta parameter
taps = signal.firwin( N_filter, cutoff=cutoff_freq, window=('kaiser', beta))
# loop for realizations
for _k in range( N_real ):
# generate noise
noise = np.sqrt(2) * np.random.normal( 0.0, 1.0, N )
# activate to have filtered noise
if filtered == 1:
noise = signal.lfilter( taps, 1.0, noise )
noise /= np.linalg.norm( noise )
# find estimations
psd_noise_per[ _k, :] = find_periodogram( noise, Ome )
psd_noise_welch[ _k, :] = find_welch_estimate( noise, M, O, Ome )
Omega_0 = 1.0
Omega_1 = 1.2
y = np.sin( Omega_0 * N_range ) + np.sin( Omega_1 * N_range) + np.random.normal(0.0, 1.0, size = N)
psd_sin_per[ _k, :] = find_periodogram( y, Ome )
psd_sin_welch[ _k, :] = find_welch_estimate( y, M, O, Ome )
# get mean and std along realizations
psd_noise_per_average = psd_noise_per.mean( axis=0 )
psd_noise_per_tria_std = psd_noise_per.std( axis=0 )
psd_noise_welch_average = psd_noise_welch.mean( axis=0 )
psd_noise_welch_std = psd_noise_welch.std( axis=0 )
psd_sin_per_average = psd_sin_per.mean( axis=0 )
psd_sin_per_tria_std = psd_sin_per.std( axis=0 )
psd_sin_welch_average = psd_sin_welch.mean( axis=0 )
psd_sin_welch_std = psd_sin_welch.std( axis=0 )
In [6]:
plt.figure()
plt.subplot(121)
plt.plot(Ome, psd_noise_per_average)
plt.plot(Ome, psd_noise_per_average - psd_noise_per_tria_std)
plt.plot(Ome, psd_noise_per_average + psd_noise_per_tria_std)
plt.title('Periodogram')
plt.grid(True);
plt.ylabel('$\hat{\Phi}_p(\Omega)$')
plt.subplot(122)
plt.plot(Ome, psd_noise_welch_average)
plt.plot(Ome, psd_noise_welch_average - psd_noise_welch_std)
plt.plot(Ome, psd_noise_welch_average + psd_noise_welch_std)
plt.title('Welch')
plt.grid(True);
plt.ylabel('$\hat{\Phi}_W(\Omega)$')
plt.figure()
plt.subplot(121)
plt.plot(Ome, psd_sin_per_average)
plt.plot(Ome, psd_sin_per_average - psd_sin_per_tria_std)
plt.plot(Ome, psd_sin_per_average + psd_sin_per_tria_std)
plt.title('Periodogram')
plt.grid(True);
plt.ylabel('$\hat{\Phi}_p(\Omega)$')
plt.subplot(122)
plt.plot(Ome, psd_sin_welch_average)
plt.plot(Ome, psd_sin_welch_average - psd_sin_welch_std)
plt.plot(Ome, psd_sin_welch_average + psd_sin_welch_std)
plt.title('Welch')
plt.grid(True);
plt.ylabel('$\hat{\Phi}_W(\Omega)$')
Out[6]:
In [ ]: