In [102]:
try:
    reload(densprofiles)
    reload(define_rcsample)
    reload(fitDens)
    reload(fitDens.densprofiles)
    reload(compareDataModel)
    reload(mockDensData)
except NameError:
    import densprofiles
    import define_rcsample
    import fitDens
    import compareDataModel
    import mockDensData
%pylab inline
import numpy
from matplotlib.pyplot import *
import os, os.path
import pickle
import copy
from galpy.util import bovy_plot, bovy_coords
import triangle
import mwdust
import fitsio


Populating the interactive namespace from numpy and matplotlib
WARNING: pylab import has clobbered these variables: ['sample', 'copy', 'draw_if_interactive', 'new_figure_manager']
`%matplotlib` prevents importing * from pylab and numpy

Setup

Load the selection function and effective selection function


In [103]:
selectFile= '../savs/selfunc-nospdata.sav'
if os.path.exists(selectFile):
    with open(selectFile,'rb') as savefile:
        apo= pickle.load(savefile)
with open('../essf/essf_green15.sav','rb') as savefile:
    locations= pickle.load(savefile)
    effsel= pickle.load(savefile)
    distmods= pickle.load(savefile)
with open('../essf/essf_marshall06.sav','rb') as savefile:
    mlocations= pickle.load(savefile)
    meffsel= pickle.load(savefile)
    mdistmods= pickle.load(savefile)
# Fill in regions not covered by Marshall map
meffsel[meffsel < -0.5]= effsel[meffsel < -0.5]
with open('../essf/essf_zero.sav','rb') as savefile:
    zlocations= pickle.load(savefile)
    zeffsel= pickle.load(savefile)
    zdistmods= pickle.load(savefile)
with open('../essf/essf_drimmel03.sav','rb') as savefile:
    dlocations= pickle.load(savefile)
    deffsel= pickle.load(savefile)
    ddistmods= pickle.load(savefile)
# Get (lcen,bcen) for each location
lcen= numpy.zeros(len(locations))
bcen= numpy.zeros(len(locations))
hmax= numpy.zeros(len(locations))
for ii,loc in enumerate(locations):
    tlcen, tbcen= apo.glonGlat(loc)
    lcen[ii]= tlcen
    bcen[ii]= tbcen
    hmax[ii]= apo.Hmax(loc,cohort='long')
    if numpy.isnan(hmax[ii]):
        hmax[ii]= apo.Hmax(loc,cohort='medium')
        if numpy.isnan(hmax[ii]):
            hmax[ii]= apo.Hmax(loc,cohort='short')
# Get the locations of various subsamples
highbIndx= numpy.fabs(bcen) > 10.
outDiskIndx= (lcen > 150.)*(lcen < 250.)*(True-highbIndx)
betwDiskIndx= (lcen <= 150.)*(lcen >= 70.)*(True-highbIndx)
inDiskIndx= (lcen < 70.)*(lcen >= 25.)*(True-highbIndx)
bulgeIndx= ((lcen < 25.)+(lcen > 335.))*(True-highbIndx)
brightIndx= (hmax <= 12.21)
mediumIndx= (hmax > 12.21)*(hmax <= 12.81)
faintIndx= (hmax > 12.81)

Function to load the data:


In [104]:
ldata= None
data_highbIndx= None
data_outDiskIndx= None
data_betwDiskIndx= None
data_inDiskIndx= None
data_bulgeIndx= None
data_brightIndx= None
data_mediumIndx= None
data_faintIndx= None
def load_data(subsample='lowlow'):
    global ldata
    global data_highbIndx
    global data_outDiskIndx
    global data_betwDiskIndx
    global data_inDiskIndx    
    global data_bulgeIndx    
    global data_brightIndx
    global data_mediumIndx
    global data_faintIndx
    if subsample.lower() == 'all':
        ldata= define_rcsample.get_rcsample()
    elif subsample.lower() == 'alllowalpha':
        ldata= define_rcsample.get_rcsample()
        ldata= ldata[ldata[define_rcsample._AFETAG] < 0.1]
    elif subsample.lower() == 'lowlow':
        ldata= define_rcsample.get_lowlowsample()
    elif subsample.lower() == 'highfeh':
        ldata= define_rcsample.get_highfehsample()
    elif subsample.lower() == 'highalpha':
        ldata= define_rcsample.get_highalphasample()
    elif subsample.lower() == 'solar':
        ldata= define_rcsample.get_solarsample()
    # Get the indices of the various subsamples defined above
    data_highbIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[highbIndx]: data_highbIndx[ii]= True
    data_outDiskIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[outDiskIndx]: data_outDiskIndx[ii]= True
    data_betwDiskIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[betwDiskIndx]: data_betwDiskIndx[ii]= True
    data_inDiskIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[inDiskIndx]: data_inDiskIndx[ii]= True
    data_bulgeIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[bulgeIndx]: data_bulgeIndx[ii]= True
    data_brightIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[brightIndx]: data_brightIndx[ii]= True
    data_mediumIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[mediumIndx]: data_mediumIndx[ii]= True
    data_faintIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[faintIndx]: data_faintIndx[ii]= True

Function to load mock data


In [105]:
def load_mock_data(type='exp',subsample='lowlow',nls=21):
    global ldata
    global data_highbIndx
    global data_outDiskIndx
    global data_betwDiskIndx
    global data_inDiskIndx    
    global data_bulgeIndx    
    global data_brightIndx
    global data_mediumIndx
    global data_faintIndx
    if not nls is None:
        ldata= fitsio.read('../mocks/%s-%s-nls21-20k.fits' % (subsample,type))
    else:
        ldata= fitsio.read('../mocks/%s-%s-20k.fits' % (subsample,type))
    # Assign location IDs
    locids= numpy.zeros(len(ldata),dtype='int')
    XYZ= bovy_coords.galcencyl_to_XYZ(ldata['RC_GALR_H'],ldata['RC_GALPHI_H'],ldata['RC_GALZ_H'],
                                      Xsun=define_rcsample._R0,
                                            Ysun=0.,
                                            Zsun=define_rcsample._Z0)
    lbd= bovy_coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2],degree=True)
    for ii,loc in enumerate(locations):
        tlcen, tbcen= apo.glonGlat(loc)
        trad= apo.radius(loc)
        tindx= (tlcen-lbd[:,0])**2.+(tbcen-lbd[:,1])**2. < trad**2.
        locids[tindx]= loc
    # Get the indices of the various subsamples defined above
    data_highbIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[highbIndx]: data_highbIndx[ii]= True
    data_outDiskIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[outDiskIndx]: data_outDiskIndx[ii]= True
    data_betwDiskIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[betwDiskIndx]: data_betwDiskIndx[ii]= True
    data_inDiskIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[inDiskIndx]: data_inDiskIndx[ii]= True
    data_bulgeIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[bulgeIndx]: data_bulgeIndx[ii]= True
    data_brightIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[brightIndx]: data_brightIndx[ii]= True
    data_mediumIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[mediumIndx]: data_mediumIndx[ii]= True
    data_faintIndx= numpy.zeros(len(ldata),dtype='bool')
    for ii in range(len(ldata)):
        if locids[ii] in numpy.array(locations)[faintIndx]: data_faintIndx[ii]= True

Function to fit and compare the data and the best fit:


In [106]:
def fit(type='brokenexp',fitIndx=None,data_fitIndx=None,dmap='green15'):
    if fitIndx is None:
        fitIndx= numpy.ones(len(locations),dtype='bool') #True-betwDiskIndx
        data_fitIndx= numpy.ones(len(ldata),dtype='bool') #True-data_betwDiskIndx
    if dmap == 'green15':
        tlocations= copy.deepcopy(locations)
        teffsel= copy.deepcopy(effsel)
        tdistmods= copy.deepcopy(distmods)
    elif dmap.lower() == 'marshall06':        
        tlocations= copy.deepcopy(mlocations)
        teffsel= copy.deepcopy(meffsel)
        tdistmods= copy.deepcopy(mdistmods)
    elif dmap.lower() == 'zero':        
        tlocations= copy.deepcopy(zlocations)
        teffsel= copy.deepcopy(zeffsel)
        tdistmods= copy.deepcopy(zdistmods)
    elif dmap.lower() == 'drimmel03':        
        tlocations= copy.deepcopy(dlocations)
        teffsel= copy.deepcopy(deffsel)
        tdistmods= copy.deepcopy(ddistmods)
    bf= fitDens.fitDens(ldata[data_fitIndx],numpy.array(tlocations)[fitIndx],copy.deepcopy(teffsel)[fitIndx],tdistmods,type=type)[0]
    # Full prediction
    Xs,pd= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[fitIndx],copy.deepcopy(teffsel)[fitIndx],tdistmods,type=type,coord='dm')
    figsize(18,12)
    # Now plot the data and the best fit  
    subplot(2,4,1)
    try:
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[highbIndx*fitIndx],copy.deepcopy(teffsel)[highbIndx*fitIndx],tdistmods,type=type,coord='dm')
        hist(ldata['RC_DM_H'][data_highbIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        xlabel(r'$\mu$')
        bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_highbIndx*data_fitIndx),numpy.sum(data_fitIndx))
                            +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
        bovy_plot.bovy_text(r'$\mathrm{High\ latitude}$',title=True,size=14.)
    except ValueError: pass
    subplot(2,4,2)
    try:
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[outDiskIndx*fitIndx],copy.deepcopy(teffsel)[outDiskIndx*fitIndx],tdistmods,type=type,coord='dm')
        hist(ldata['RC_DM_H'][data_outDiskIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        xlabel(r'$\mu$')
        bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_outDiskIndx*data_fitIndx),numpy.sum(data_fitIndx))
                            +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
        bovy_plot.bovy_text(r'$\mathrm{Outer\ disk}$',title=True,size=14.)
    except ValueError: pass
    subplot(2,4,3)
    try:
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[betwDiskIndx*fitIndx],copy.deepcopy(teffsel)[betwDiskIndx*fitIndx],tdistmods,type=type,coord='dm')
        hist(ldata['RC_DM_H'][data_betwDiskIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        xlabel(r'$\mu$')
        bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_betwDiskIndx*data_fitIndx),numpy.sum(data_fitIndx))
                        +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(mlocations)[betwDiskIndx*fitIndx],copy.deepcopy(meffsel)[betwDiskIndx*fitIndx],distmods,type=type,coord='dm')
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        bovy_plot.bovy_text(r'$\mathrm{Intermediate\ disk}$',title=True,size=14.)
    except ValueError: pass
    subplot(2,4,4)
    try:
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[inDiskIndx*fitIndx],copy.deepcopy(teffsel)[inDiskIndx*fitIndx],tdistmods,type=type,coord='dm')
        hist(ldata['RC_DM_H'][data_inDiskIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        xlabel(r'$\mu$')
        bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_inDiskIndx*data_fitIndx),numpy.sum(data_fitIndx))
                            +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(mlocations)[inDiskIndx],copy.deepcopy(meffsel)[inDiskIndx],distmods,type=type,coord='dm')
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        bovy_plot.bovy_text(r'$\mathrm{Inner\ disk}$',title=True,size=14.)
    except ValueError: pass
    subplot(2,4,5)
    try:
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[bulgeIndx*fitIndx],copy.deepcopy(teffsel)[bulgeIndx*fitIndx],tdistmods,type=type,coord='dm')
        hist(ldata['RC_DM_H'][data_bulgeIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        xlabel(r'$\mu$')
        bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_bulgeIndx*data_fitIndx),numpy.sum(data_fitIndx))
                            +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
        Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(mlocations)[bulgeIndx*fitIndx],copy.deepcopy(meffsel)[bulgeIndx*fitIndx],distmods,type=type,coord='dm')
        plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
        bovy_plot.bovy_text(r'$\mathrm{Towards\ bulge}$',title=True,size=14.)
    except ValueError: pass
    subplot(2,4,6)
    Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[brightIndx*fitIndx],copy.deepcopy(teffsel)[brightIndx*fitIndx],tdistmods,type=type,coord='dm')
    hist(ldata['RC_DM_H'][data_brightIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
    plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
    xlabel(r'$\mu$')
    bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_brightIndx*data_fitIndx),numpy.sum(data_fitIndx))
                        +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
    Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(mlocations)[brightIndx*fitIndx],copy.deepcopy(meffsel)[brightIndx*fitIndx],distmods,type=type,coord='dm')
    plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
    bovy_plot.bovy_text(r'$\mathrm{Short\ fields}$',title=True,size=14.)
    subplot(2,4,7)
    Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[mediumIndx*fitIndx],copy.deepcopy(teffsel)[mediumIndx*fitIndx],tdistmods,type=type,coord='dm')
    hist(ldata['RC_DM_H'][data_mediumIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
    plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
    xlabel(r'$\mu$')
    bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_mediumIndx*data_fitIndx),numpy.sum(data_fitIndx))
                        +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
    Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(mlocations)[mediumIndx*fitIndx],copy.deepcopy(meffsel)[mediumIndx*fitIndx],distmods,type=type,coord='dm')
    plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
    bovy_plot.bovy_text(r'$\mathrm{Medium\ fields}$',title=True,size=14.)
    subplot(2,4,8)
    Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(tlocations)[faintIndx*fitIndx],copy.deepcopy(teffsel)[faintIndx*fitIndx],tdistmods,type=type,coord='dm')
    hist(ldata['RC_DM_H'][data_faintIndx*data_fitIndx],histtype='step',normed=True,range=[7.,15.5],bins=31)
    plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
    xlabel(r'$\mu$')
    bovy_plot.bovy_text(r'$%i / %i\ \mathrm{stars}$' % (numpy.sum(data_faintIndx*data_fitIndx),numpy.sum(data_fitIndx))
                        +'\n'+r'$%i / %i\ \mathrm{predicted}$' % (numpy.sum(pdt)/numpy.sum(pd)*numpy.sum(data_fitIndx),numpy.sum(data_fitIndx)),top_left=True,size=14.)
    Xs,pdt= compareDataModel.predict_spacedist(bf,numpy.array(mlocations)[faintIndx*fitIndx],copy.deepcopy(meffsel)[faintIndx*fitIndx],distmods,type=type,coord='dm')
    plot(Xs,pdt/numpy.sum(pdt)/(Xs[1]-Xs[0]))
    bovy_plot.bovy_text(r'$\mathrm{Long\ fields}$',title=True,size=14.)
    # Return the parameters
    return bf

In [107]:
def sample(type='brokenexp',fitIndx=None,data_fitIndx=None,nsamples=3000,dmap='green15'):
    if fitIndx is None:
        fitIndx= numpy.ones(len(locations),dtype='bool') #True-betwDiskIndx
        data_fitIndx= numpy.ones(len(ldata),dtype='bool') #True-data_betwDiskIndx
    if dmap == 'green15':
        tlocations= copy.deepcopy(locations)
        teffsel= copy.deepcopy(effsel)
        tdistmods= copy.deepcopy(distmods)
    elif dmap.lower() == 'marshall06':        
        tlocations= copy.deepcopy(mlocations)
        teffsel= copy.deepcopy(meffsel)
        tdistmods= copy.deepcopy(mdistmods)
    elif dmap.lower() == 'zero':        
        tlocations= copy.deepcopy(zlocations)
        teffsel= copy.deepcopy(zeffsel)
        tdistmods= copy.deepcopy(zdistmods)
    elif dmap.lower() == 'drimmel03':        
        tlocations= copy.deepcopy(dlocations)
        teffsel= copy.deepcopy(deffsel)
        tdistmods= copy.deepcopy(ddistmods)
    bf, samples= fitDens.fitDens(ldata[data_fitIndx],numpy.array(tlocations)[fitIndx],copy.deepcopy(teffsel)[fitIndx],
                                 tdistmods,type=type,
                                 nsamples=nsamples,mcmc=True)
    labels= []
    for ii in range(len(bf)): labels.append(r"$\mathrm{param}\ %i$" % ii)
    triangle.corner(samples.T,quantiles=[0.16, 0.5, 0.84],labels=labels,
                         show_titles=True, title_args={"fontsize": 12})
    return None

The low-metallicity, low-alpha subsample


In [108]:
load_data(subsample='lowlow')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [37]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 50772.786996
         Iterations: 91
         Function evaluations: 167
Out[37]:
array([ 0.05624228,  2.22928365, -6.34730234])

In [9]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 50435.627794
         Iterations: 116
         Function evaluations: 197
Out[9]:
array([-0.2860792 ,  2.10416179,  0.37137729,  2.37827255])

In [85]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50432.421055
         Iterations: 169
         Function evaluations: 286
Out[85]:
array([-0.27974677,  2.11179999,  0.36976479,  2.3784276 ])

In [225]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='zero')


Optimization terminated successfully.
         Current function value: 51525.821414
         Iterations: 224
         Function evaluations: 366
Out[225]:
array([-0.33270138,  1.96964778,  0.61718588,  2.38741902])

In [8]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50395.516584
         Iterations: 264
         Function evaluations: 427
Out[8]:
array([-0.26623401,  2.68828866,  0.36345503,  2.38412944, -0.08567938])

In [70]:
fit(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50400.543582
         Iterations: 373
         Function evaluations: 600
Out[70]:
array([ 0.26732491,  2.60684983,  0.36771128,  2.38378337, -0.05009654])

In [27]:
fit(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50389.831672
         Iterations: 322
         Function evaluations: 529
Out[27]:
array([ 0.26483203,  2.7494468 ,  0.35486861,  2.38413029, -0.04582557])

In [10]:
fit(type='tribrokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 50435.627759
         Iterations: 140
         Function evaluations: 237
Out[10]:
array([ 0.28601156,  2.10417451,  0.37120615,  2.37827569])

In [11]:
fit(type='gaussexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 50418.994788
         Iterations: 61
         Function evaluations: 114
Out[11]:
array([ 0.41739384,  2.10426461,  2.3485529 ])

In [34]:
fit(type='brokentwoexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50432.421047
         Iterations: 172
         Function evaluations: 289
Out[34]:
array([ -2.79739454e-01,   2.11181551e+00,   3.69798054e-01,
         2.37842700e+00,  -4.17451022e-04,   2.11195708e+00])

In [35]:
fit(type='brokentwoexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50395.516583
         Iterations: 357
         Function evaluations: 552
Out[35]:
array([ -2.66244085e-01,   2.68832570e+00,   3.63461402e-01,
         2.38412938e+00,  -1.40999259e-03,   2.68818548e+00,
        -8.56841866e-02])

In [12]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 50435.627739
         Iterations: 184
         Function evaluations: 314
/Library/Python/2.7/site-packages/MarkovPy-0.1-py2.7.egg/markovpy/ensemble.py:234: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.
  if lnprob == None:

Mean, standard devs, acor tau, acor mean, acor s ...
-0.290177261226 0.0386773432331 [ 41.72416767] [-0.29017726] [ 0.00249936]
2.10285597921 0.0400327042427 [ 57.06593115] [ 2.10285598] [ 0.00302543]
0.370757297926 0.0226878556762 [ 49.28618963] [ 0.3707573] [ 0.00159315]
2.37919802367 0.0349445310403 [ 67.94337954] [ 2.37919802] [ 0.00288177]
Quantiles:
[(0.16, -0.31325741893874326), (0.5, -0.28758293739089191), (0.84, -0.26755364085423777)]
Quantiles:
[(0.16, 2.0688581676357631), (0.5, 2.1053308444089436), (0.84, 2.1367456994601133)]
Quantiles:
[(0.16, 0.34931527391815803), (0.5, 0.37118675578593352), (0.84, 0.39180828480777169)]
Quantiles:
[(0.16, 2.3677916204486018), (0.5, 2.3781011335453126), (0.84, 2.3853157096047797)]

In [10]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50395.516584
         Iterations: 264
         Function evaluations: 427
/Users/bovy/src/markovpy/markovpy/ensemble.py:234: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.
  if lnprob == None:

Mean, standard devs, acor tau, acor mean, acor s ...
-0.26992101392 0.0327459758849 35.2633269102 -0.26992101392 0.00194540041058
2.680733004 0.0835488629171 12.5012487608 2.680733004 0.00295292355641
0.361910102811 0.0264852690045 1.9687658257 0.361910102811 0.000371710352391
2.38289926433 0.0180163147444 18.0593961894 2.38289926433 0.000765937182606
-0.0847043481718 0.0165364264314 18.6143384067 -0.0847043481718 0.000713613195444
Quantiles:
[(0.16, -0.29167973072810877), (0.5, -0.2668967662062996), (0.84, -0.24522575588392392)]
Quantiles:
[(0.16, 2.6002674196551849), (0.5, 2.6782797257369411), (0.84, 2.7628719056206634)]
Quantiles:
[(0.16, 0.3418580246846602), (0.5, 0.36080386362680233), (0.84, 0.38320782055393632)]
Quantiles:
[(0.16, 2.3756996473145398), (0.5, 2.3841210720059562), (0.84, 2.3920553915850173)]
Quantiles:
[(0.16, -0.094732693808625368), (0.5, -0.083872879603008682), (0.84, -0.074078924548766523)]

In [79]:
sample(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50389.831672
         Iterations: 322
         Function evaluations: 529
Mean, standard devs, acor tau, acor mean, acor s ...
0.266023862349 0.0227894933272 17.6787133544 0.266023862349 0.000958312285518
2.7660224743 0.0846852564135 14.6266623909 2.7660224743 0.0032379226674
0.359543440251 0.0247296784249 78.5228141763 0.359543440251 0.00219209515674
2.38559094267 0.010642588728 30.4809497395 2.38559094267 0.000587781706105
-0.0460071069443 0.00535792933391 18.5672870502 -0.0460071069443 0.000230889795688
Quantiles:
[(0.16, 0.24432455975418155), (0.5, 0.26583644225067427), (0.84, 0.28746372771486295)]
Quantiles:
[(0.16, 2.6823775597137587), (0.5, 2.7653323902173135), (0.84, 2.8511653792666953)]
Quantiles:
[(0.16, 0.33582126877433155), (0.5, 0.35784259624670589), (0.84, 0.38306815663856236)]
Quantiles:
[(0.16, 2.3777879108810653), (0.5, 2.3851497996110411), (0.84, 2.3939879984643184)]
Quantiles:
[(0.16, -0.050144164968797839), (0.5, -0.046297580318631348), (0.84, -0.041774140318022762)]

In [109]:
sample(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 50400.543582
         Iterations: 373
         Function evaluations: 600
Mean, standard devs, acor tau, acor mean, acor s ...
0.270285866757 0.0282155014918 36.7552496573 0.270285866757 0.00171119716627
2.60646173744 0.0732607267738 8.79556560927 2.60646173744 0.00217303651929
0.373496937152 0.0336841820265 79.197743529 0.373496937152 0.00299887492716
2.38322723436 0.0226231636046 4.51192736385 2.38322723436 0.000480763171792
-0.0495672458871 0.00702781704576 23.2153224818 -0.0495672458871 0.000338681997508
Quantiles:
[(0.16, 0.24466287024625372), (0.5, 0.2684022846486715), (0.84, 0.29346184100370665)]
Quantiles:
[(0.16, 2.5359185194715126), (0.5, 2.6059613637851982), (0.84, 2.676493930698892)]
Quantiles:
[(0.16, 0.34958490775209849), (0.5, 0.37200454494088286), (0.84, 0.39093620935475881)]
Quantiles:
[(0.16, 2.3753807967944294), (0.5, 2.3839161494314012), (0.84, 2.3917330285450977)]
Quantiles:
[(0.16, -0.056476561308413317), (0.5, -0.04934538047939456), (0.84, -0.043121846319706128)]

The solar-abundances subsample


In [110]:
load_data(subsample='solar')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [14]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 38141.887828
         Iterations: 83
         Function evaluations: 153
Out[14]:
array([ 0.31391442,  3.14597225, -7.60498254])

In [15]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 37684.532069
         Iterations: 139
         Function evaluations: 241
Out[15]:
array([-0.14117556,  3.02239417,  0.65289706,  2.21839777])

In [90]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37656.321057
         Iterations: 126
         Function evaluations: 220
Out[90]:
array([-0.11105643,  3.06232169,  0.65306615,  2.22035022])

In [89]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='zero')


Optimization terminated successfully.
         Current function value: 38357.527945
         Iterations: 181
         Function evaluations: 301
Out[89]:
array([-0.27586568,  2.83004669,  0.78744044,  2.23252104])

In [14]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37611.119026
         Iterations: 221
         Function evaluations: 362
Out[14]:
array([-0.10110613,  3.54024476,  0.64514349,  2.22068504, -0.08783547])

In [92]:
fit(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37618.463819
         Iterations: 342
         Function evaluations: 553
Out[92]:
array([ 0.10318465,  3.4392004 ,  0.64805625,  2.22068338, -0.04605798])

In [43]:
fit(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37601.786571
         Iterations: 216
         Function evaluations: 349
Out[43]:
array([ 0.09706641,  3.6824881 ,  0.63770142,  2.22060838, -0.05447404])

In [37]:
fit(type='brokentwoexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37656.321053
         Iterations: 301
         Function evaluations: 480
Out[37]:
array([ -1.11068191e-01,   3.06213146e+00,   6.53046275e-01,
         2.22035258e+00,  -1.09872191e-03,   3.06245369e+00])

In [38]:
fit(type='brokentwoexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37611.119028
         Iterations: 439
         Function evaluations: 672
Out[38]:
array([ -1.01106929e-01,   3.54015885e+00,   6.45144079e-01,
         2.22068511e+00,  -1.49066181e-03,   3.54009663e+00,
        -8.78251708e-02])

In [16]:
fit(type='brokenexpfixedspiral',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 37684.452631
         Iterations: 602
         Function evaluations: 977
Out[16]:
array([-0.14205882,  3.02237777,  0.65022631,  2.216517  , -4.4637543 ])

In [17]:
fit(type='gaussexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 37707.447645
         Iterations: 69
         Function evaluations: 125
Out[17]:
array([ 0.43188101,  3.05776732,  2.0467248 ])

In [18]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 37684.532069
         Iterations: 139
         Function evaluations: 241
Mean, standard devs, acor tau, acor mean, acor s ...
-0.137003042843 0.0295685835838 [ 38.86311408] [-0.13700304] [ 0.00184367]
3.01499848064 0.055359878901 [ 41.00842721] [ 3.01499848] [ 0.00354395]
0.650704245602 0.0280528961564 [ 41.80091616] [ 0.65070425] [ 0.00181434]
2.21891729501 0.0183503296486 [ 28.04701196] [ 2.2189173] [ 0.00097217]
Quantiles:
[(0.16, -0.1629688575410721), (0.5, -0.13650230737743713), (0.84, -0.10956606615271323)]
Quantiles:
[(0.16, 2.9597946828533312), (0.5, 3.0152378139418001), (0.84, 3.0704129580568003)]
Quantiles:
[(0.16, 0.63362443604820284), (0.5, 0.65177053223260661), (0.84, 0.67146475468550948)]
Quantiles:
[(0.16, 2.2111015847245237), (0.5, 2.2190535382486591), (0.84, 2.2282549875437594)]

In [17]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37611.119026
         Iterations: 221
         Function evaluations: 362
Mean, standard devs, acor tau, acor mean, acor s ...
-0.0950541248299 0.0315109490922 14.8948667167 -0.0950541248299 0.00121630046334
3.55386080321 0.0856693536216 27.8788863823 3.55386080321 0.00452363538537
0.653741027874 0.023006334651 14.8424681258 0.653741027874 0.000886361016461
2.22472775195 0.0169129546806 32.6544194286 2.22472775195 0.000966534145179
-0.0916607907517 0.019706321023 51.7758545971 -0.0916607907517 0.00141835326088
Quantiles:
[(0.16, -0.1227455262657835), (0.5, -0.095568156190198525), (0.84, -0.065856878214175726)]
Quantiles:
[(0.16, 3.4708192695486257), (0.5, 3.5533769232940711), (0.84, 3.6339486796022666)]
Quantiles:
[(0.16, 0.63330571049495332), (0.5, 0.65241276095080536), (0.84, 0.67371766796680621)]
Quantiles:
[(0.16, 2.21495824590711), (0.5, 2.2234513643919587), (0.84, 2.2369847480310874)]
Quantiles:
[(0.16, -0.10086994625727094), (0.5, -0.089982689960075815), (0.84, -0.079745378129795694)]

In [18]:
sample(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37601.786571
         Iterations: 216
         Function evaluations: 349
Mean, standard devs, acor tau, acor mean, acor s ...
0.102553923931 0.0523535199829 231.301162717 0.102553923931 0.00796419691168
3.67253841429 0.0963049858518 150.541062432 3.67253841429 0.0118189832383
0.642120062681 0.0290795962768 24.1663319402 0.642120062681 0.0014300144021
2.22387074191 0.0241261212674 28.1429537318 2.22387074191 0.0012803534007
-0.0528425108262 0.0133655992601 38.7007778949 -0.0528425108262 0.000831850003029
Quantiles:
[(0.16, 0.062446039367502669), (0.5, 0.092415365993509552), (0.84, 0.1317182887687221)]
Quantiles:
[(0.16, 3.5809224650806719), (0.5, 3.6827813699401517), (0.84, 3.7655584104388726)]
Quantiles:
[(0.16, 0.62067888779235214), (0.5, 0.64075380026687279), (0.84, 0.66162704667981009)]
Quantiles:
[(0.16, 2.211956065939797), (0.5, 2.2231926747873114), (0.84, 2.2372752132215292)]
Quantiles:
[(0.16, -0.057847900390050028), (0.5, -0.053994745560542123), (0.84, -0.050162877608065343)]

In [111]:
sample(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 37618.463819
         Iterations: 342
         Function evaluations: 553
Mean, standard devs, acor tau, acor mean, acor s ...
0.101551762326 0.038250715586 34.6147156989 0.101551762326 0.00225081048593
3.49707503415 0.164479232505 1.48277004432 3.49707503415 0.00200299323597
0.629222997197 0.0827667512973 1.1428943175 0.629222997197 0.000884819266759
2.21673873399 0.0335670159941 1.46999667582 2.21673873399 0.000407004299264
-0.0492176768787 0.0119658269447 1.52374498707 -0.0492176768787 0.000147717372049
Quantiles:
[(0.16, 0.067264747610169068), (0.5, 0.094447150973283475), (0.84, 0.14125871307437085)]
Quantiles:
[(0.16, 3.3812231864962032), (0.5, 3.4583970385946516), (0.84, 3.5573885441293225)]
Quantiles:
[(0.16, 0.62621996266552182), (0.5, 0.65203313367400995), (0.84, 0.6735933491125663)]
Quantiles:
[(0.16, 2.2097477088556916), (0.5, 2.2232547949064037), (0.84, 2.238598108202257)]
Quantiles:
[(0.16, -0.054762288572929627), (0.5, -0.046244921315612066), (0.84, -0.04030095687987232)]

In [328]:
sample(type='tribrokentwoexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 37684.532068
         Iterations: 283
         Function evaluations: 455
Mean, standard devs, acor tau, acor mean, acor s ...
0.14505311359 0.0282436780679 [ 26.99494139] [ 0.14505311] [ 0.00146808]
3.0189176596 0.0827676741385 [ 35.99078808] [ 3.01891766] [ 0.00496712]
0.657349103605 0.0242380878876 [ 42.54550358] [ 0.6573491] [ 0.00158164]
2.21771188385 0.0146342627886 [ 23.79707807] [ 2.21771188] [ 0.00071423]
-3.29665960449 2.4459367136 [ nan] [-3.2966596] [ nan]
3.70375387892 2.20343352853 [ 38.40327226] [ 3.70375388] [ 0.13661131]
Quantiles:
[(0.16, 0.11779995438892074), (0.5, 0.1458873271268861), (0.84, 0.16991824360218069)]
Quantiles:
[(0.16, 2.9445357544285438), (0.5, 3.0162233592684484), (0.84, 3.0957568028597544)]
Quantiles:
[(0.16, 0.63812447125415273), (0.5, 0.656831615299585), (0.84, 0.67446592587255971)]
Quantiles:
[(0.16, 2.2101882274926963), (0.5, 2.2178738577307207), (0.84, 2.2255862403110642)]
Quantiles:
[(0.16, -6.1168759344113486), (0.5, -3.6599320991931634), (0.84, -0.184636619286278)]
Quantiles:
[(0.16, 2.5793963562608075), (0.5, 3.0701173973890601), (0.84, 4.8840843275080337)]

The high metallicity subsample


In [112]:
load_data(subsample='highfeh')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [20]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 12788.861831
         Iterations: 196
         Function evaluations: 388
Out[20]:
array([  0.56594128,   3.376182  , -34.01565111])

In [21]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 12563.404758
         Iterations: 189
         Function evaluations: 314
Out[21]:
array([-0.58047311,  3.52203845,  0.79996553,  1.87896841])

In [92]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12529.214385
         Iterations: 160
         Function evaluations: 274
Out[92]:
array([-0.06789118,  3.67144599,  0.87537555,  1.98528865])

In [93]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='zero')


Optimization terminated successfully.
         Current function value: 12915.715800
         Iterations: 183
         Function evaluations: 312
Out[93]:
array([-1.03578259,  3.21164622,  0.79636181,  1.8762249 ])

In [20]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12479.035096
         Iterations: 510
         Function evaluations: 805
Out[20]:
array([-0.36465361,  3.73886146,  0.79592929,  1.89325144, -0.13727103])

In [95]:
fit(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12520.414997
         Iterations: 432
         Function evaluations: 725
Out[95]:
array([  6.71213234e-05,   3.71971908e+00,   8.47121879e-01,
         1.98568585e+00,  -8.78343316e-03])

In [96]:
fit(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12470.896288
         Iterations: 263
         Function evaluations: 431
Out[96]:
array([ 0.35325678,  3.87998601,  0.78006114,  1.89263948, -0.0896969 ])

In [22]:
fit(type='gaussexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 12585.957279
         Iterations: 79
         Function evaluations: 145
Out[22]:
array([ 0.46470151,  3.46529491,  1.72386158])

In [40]:
fit(type='brokentwoexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12694.617642
         Iterations: 240
         Function evaluations: 411
Out[40]:
array([-0.74719408,  3.63374011,  0.6035629 ,  0.08813267, -0.00418365,
        3.63371746])

In [41]:
fit(type='brokentwoexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12638.372354
         Iterations: 291
         Function evaluations: 471
Out[41]:
array([  1.10169248e-02,   3.63426564e+00,   5.94467199e-01,
         4.47904031e-01,  -2.86212266e-03,   3.63435183e+00,
        -1.47206275e-01])

In [23]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 12563.404758
         Iterations: 189
         Function evaluations: 314
Mean, standard devs, acor tau, acor mean, acor s ...
-0.60026015974 0.112259504394 [ 59.54472749] [-0.60026016] [ 0.00866516]
3.51781396629 0.0975665208485 [ 26.13135511] [ 3.51781397] [ 0.00498542]
0.795187568407 0.0245291873841 [ 20.4305297] [ 0.79518757] [ 0.00110879]
1.87536889422 0.0196580271115 [ 35.64506038] [ 1.87536889] [ 0.00117414]
Quantiles:
[(0.16, -0.70483174539827564), (0.5, -0.592345776722629), (0.84, -0.49437446870931556)]
Quantiles:
[(0.16, 3.4255836440605814), (0.5, 3.517837089891986), (0.84, 3.6114097988021943)]
Quantiles:
[(0.16, 0.7780170066904053), (0.5, 0.79669099152246858), (0.84, 0.81413811756733911)]
Quantiles:
[(0.16, 1.8614186435279392), (0.5, 1.8766501790180594), (0.84, 1.890020974382379)]

In [22]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12479.035096
         Iterations: 510
         Function evaluations: 805
Mean, standard devs, acor tau, acor mean, acor s ...
-0.271894295983 0.13906847932 59.2319504027 -0.271894295983 0.0107071701184
3.74574272963 0.095892672032 7.29121766182 3.74574272963 0.00258965687688
0.809478158905 0.0332679729152 40.002583641 0.809478158905 0.00210445046683
1.91450576598 0.04286075184 76.1484193543 1.91450576598 0.0037411548862
-0.135173851672 0.0244828222804 12.7059978058 -0.135173851672 0.000872938106455
Quantiles:
[(0.16, -0.4044790143264827), (0.5, -0.29077459807900075), (0.84, -0.10173176286148473)]
Quantiles:
[(0.16, 3.6554221757831624), (0.5, 3.7404611163996302), (0.84, 3.8393668471539399)]
Quantiles:
[(0.16, 0.78202093551717566), (0.5, 0.80455682988301258), (0.84, 0.8374083336509518)]
Quantiles:
[(0.16, 1.8842829925765716), (0.5, 1.9060707862291502), (0.84, 1.9632385184355052)]
Quantiles:
[(0.16, -0.15135712793078909), (0.5, -0.13639266469787603), (0.84, -0.1206115395364966)]

In [23]:
sample(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12470.896288
         Iterations: 263
         Function evaluations: 431
Mean, standard devs, acor tau, acor mean, acor s ...
0.285118806102 0.144304894882 18.1763925066 0.285118806102 0.00615393290518
3.86225712415 0.0964609292019 4.52984257699 3.86225712415 0.00205212520105
0.802129938954 0.0339980603309 16.6137106407 0.802129938954 0.00138595717005
1.9158850603 0.0449026775059 13.8375814661 1.9158850603 0.00167083585747
-0.0813201093093 0.0167806944594 1.97165493161 -0.0813201093093 0.000235725925957
Quantiles:
[(0.16, 0.11115673322542191), (0.5, 0.29932020360242101), (0.84, 0.43327482339534534)]
Quantiles:
[(0.16, 3.7694828353029792), (0.5, 3.8564908243350424), (0.84, 3.9591175169323396)]
Quantiles:
[(0.16, 0.77193555608380882), (0.5, 0.7957311844845677), (0.84, 0.83266789348791548)]
Quantiles:
[(0.16, 1.8826513112055074), (0.5, 1.9028723423751299), (0.84, 1.9622872312928741)]
Quantiles:
[(0.16, -0.088893234036142174), (0.5, -0.0809740721229531), (0.84, -0.075109076519097609)]

In [113]:
sample(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 12520.414997
         Iterations: 432
         Function evaluations: 725
Mean, standard devs, acor tau, acor mean, acor s ...
0.244806698825 0.156428010964 103.31293081 0.244806698825 0.0159001608544
3.70666631452 0.110310535794 114.072288267 3.70666631452 0.0117825766763
0.825258914858 0.0369129428817 70.2219985353 0.825258914858 0.00309287928222
1.9301499109 0.0469168895103 95.2757916356 1.9301499109 0.00457961809014
-0.0598474405546 0.0111360557857 172.611030141 -0.0598474405546 0.00146357230006
Quantiles:
[(0.16, 0.068118490145929425), (0.5, 0.24478380115358137), (0.84, 0.41504883771044537)]
Quantiles:
[(0.16, 3.6040496177713504), (0.5, 3.6999779715084751), (0.84, 3.8128562319867774)]
Quantiles:
[(0.16, 0.791151265949955), (0.5, 0.82036467946241387), (0.84, 0.85917147845988739)]
Quantiles:
[(0.16, 1.8861020977499754), (0.5, 1.9196245803655523), (0.84, 1.9790815531935848)]
Quantiles:
[(0.16, -0.06861875347592114), (0.5, -0.062040242722255605), (0.84, -0.053480888583461873)]

The high alpha subsample


In [114]:
load_data(subsample='highalpha')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [25]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 3851.365481
         Iterations: 199
         Function evaluations: 377
Out[25]:
array([  0.42114841,   1.03616662, -30.15229954])

In [26]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 3850.486171
         Iterations: 322
         Function evaluations: 524
Out[26]:
array([-0.08065208,  1.04869161,  0.4349425 ,  1.64111792])

In [95]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.089178
         Iterations: 121
         Function evaluations: 212
Out[95]:
array([ 0.17520537,  1.05406632,  0.43537135,  1.64111395])

In [96]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='zero')


Optimization terminated successfully.
         Current function value: 3921.277464
         Iterations: 235
         Function evaluations: 390
Out[96]:
array([-1.04498705,  0.98158113,  0.4473401 ,  1.66233519])

In [27]:
fit(type='tribrokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.264339
         Iterations: 208
         Function evaluations: 356
Out[27]:
array([ 0.7092778 ,  1.04604503,  0.43172675,  0.1534134 ,  0.01310103])

In [26]:
fit(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.285847
         Iterations: 139
         Function evaluations: 239
Out[26]:
array([ 0.12228233,  1.0467311 ,  0.43122822,  0.43430092,  0.00644825])

In [99]:
fit(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.220841
         Iterations: 157
         Function evaluations: 270
Out[99]:
array([  4.46386002e-01,   1.05016849e+00,   4.29732460e-01,
         1.44423984e+00,  -5.65170614e-04])

In [28]:
fit(type='gaussexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 3864.347483
         Iterations: 141
         Function evaluations: 254
Out[28]:
array([  2.23033449e-01,   1.04605356e+00,   2.69680361e-07])

In [43]:
fit(type='brokentwoexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.216913
         Iterations: 503
         Function evaluations: 795
Out[43]:
array([ -3.54954239e-01,   1.04924041e+00,   4.29762187e-01,
         1.44422700e+00,  -4.09190724e-08,   1.05047177e+00])

In [44]:
fit(type='brokentwoexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.453726
         Iterations: 498
         Function evaluations: 792
Out[44]:
array([ -2.97105973e-01,   1.01728504e+00,   4.46301663e-01,
         1.60673716e+00,  -2.77369144e-04,   1.11892964e+00,
         9.69345077e-03])

In [29]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 3850.486171
         Iterations: 322
         Function evaluations: 524
Mean, standard devs, acor tau, acor mean, acor s ...
0.00485747791167 0.946411427733 [ 62.24179669] [ 0.00485748] [ 0.0746776]
1.0448935703 0.06067180557 [ 58.35171727] [ 1.04489357] [ 0.00463568]
0.41996819946 0.0285732505093 [ 73.11518728] [ 0.4199682] [ 0.00244421]
0.992057602563 0.618202576476 [ 51.53700744] [ 0.9920576] [ 0.04439281]
Quantiles:
[(0.16, -1.1085475627488162), (0.5, 0.11718991535103779), (0.84, 0.91461964343790336)]
Quantiles:
[(0.16, 0.98867125416921831), (0.5, 1.0441042334459123), (0.84, 1.0990316377488569)]
Quantiles:
[(0.16, 0.39497221378732789), (0.5, 0.41877523760441926), (0.84, 0.44408232659510405)]
Quantiles:
[(0.16, 0.307726227717256), (0.5, 0.96458171799479997), (0.84, 1.601163560346202)]

In [28]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.264339
         Iterations: 208
         Function evaluations: 356
Mean, standard devs, acor tau, acor mean, acor s ...
0.101713412505 1.01976928112 35.6352036346 0.101713412505 0.0608754812066
1.04711502254 0.0553643652753 22.6396934168 1.04711502254 0.00263459897951
0.416182745653 0.0488292052045 48.9811777709 0.416182745653 0.00340864154097
1.13215907129 0.726302541607 49.1494610713 1.13215907129 0.0509034157072
0.0128679864251 0.0294716596059 15.1289334541 0.0128679864251 0.00114639107246
Quantiles:
[(0.16, -1.1164634896098662), (0.5, 0.44929263964082), (0.84, 1.1618393309445869)]
Quantiles:
[(0.16, 0.99006269567804306), (0.5, 1.045954550114538), (0.84, 1.1037319840106303)]
Quantiles:
[(0.16, 0.37764367340471738), (0.5, 0.4286588793256374), (0.84, 0.45337520537074594)]
Quantiles:
[(0.16, 0.31765688802493541), (0.5, 1.0533559779544497), (0.84, 2.1663684000260042)]
Quantiles:
[(0.16, -0.010339730861655527), (0.5, 0.013131669161940876), (0.84, 0.038108472713986326)]

In [29]:
sample(type='tribrokenexpinvlinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.285847
         Iterations: 139
         Function evaluations: 239
Mean, standard devs, acor tau, acor mean, acor s ...
0.822285775694 0.550889562562 95.5344323251 0.822285775694 0.0538338694723
1.04735739586 0.0553997809822 8.12784522701 1.04735739586 0.00157978349344
0.429191767375 0.0287072156419 16.4145752484 0.429191767375 0.00116352467734
0.669896451162 0.44029129964 8.96553672024 0.669896451162 0.0131803335577
0.00660589690017 0.0186880004724 1.7500708824 0.00660589690017 0.000247312430595
Quantiles:
[(0.16, 0.23339356389782753), (0.5, 0.7603721495721969), (0.84, 1.4719405220637536)]
Quantiles:
[(0.16, 0.99155636122620294), (0.5, 1.0455456885827898), (0.84, 1.1030972418131817)]
Quantiles:
[(0.16, 0.40640268513998418), (0.5, 0.43038862253163951), (0.84, 0.45243043781517589)]
Quantiles:
[(0.16, 0.19677746120029693), (0.5, 0.59857004801968405), (0.84, 1.2010683522045189)]
Quantiles:
[(0.16, -0.0075719564218344731), (0.5, 0.0057022757766351656), (0.84, 0.021292283651715864)]

In [115]:
sample(type='tribrokenexplinflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 3848.220841
         Iterations: 157
         Function evaluations: 270
Mean, standard devs, acor tau, acor mean, acor s ...
0.916955550478 0.598426466921 36.2044437602 0.916955550478 0.0360143921684
1.05058524326 0.0497098149564 20.8828310004 1.05058524326 0.00227162519973
0.429861688154 0.0239997427799 16.8285150839 0.429861688154 0.000984656338692
0.806255650721 0.49911981663 122.937668601 0.806255650721 0.0553438610958
0.00728024573908 0.0154384591311 23.1365895076 0.00728024573908 0.000742656090202
Quantiles:
[(0.16, 0.23579572765767792), (0.5, 0.85600092292860608), (0.84, 1.6525823418286949)]
Quantiles:
[(0.16, 0.99980272763466449), (0.5, 1.052758473931797), (0.84, 1.098002364800186)]
Quantiles:
[(0.16, 0.40673135367593533), (0.5, 0.42936571745625984), (0.84, 0.45256620078892229)]
Quantiles:
[(0.16, 0.22936186190798258), (0.5, 0.80254512238756104), (0.84, 1.3949376086138756)]
Quantiles:
[(0.16, -0.0081787825045435761), (0.5, 0.0076577373177098614), (0.84, 0.023435119166265991)]

All low-alpha data


In [30]:
load_data(subsample='alllowalpha')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [31]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 126574.410642
         Iterations: 93
         Function evaluations: 168
Out[31]:
array([ 0.25245579,  2.68459981, -6.74943932])

In [32]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 126209.615835
         Iterations: 114
         Function evaluations: 198
Out[32]:
array([ 0.02108518,  2.61731869,  0.40007545,  2.2223084 ])

In [33]:
fit(type='gaussexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 126191.239703
         Iterations: 62
         Function evaluations: 112
Out[33]:
array([ 0.28779271,  2.62612857,  1.8952917 ])

In [34]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 126209.615835
         Iterations: 114
         Function evaluations: 198
Mean, standard devs, acor tau, acor mean, acor s ...
0.0178595569202 0.0244403455594 [ 26.77229215] [ 0.01785956] [ 0.00126491]
2.63249291841 0.0460335255068 [ 8.52698683] [ 2.63249292] [ 0.00134463]
0.396919368788 0.0192978394735 [ 22.65080286] [ 0.39691937] [ 0.00091859]
2.21806786148 0.0312585911188 [ 36.23439968] [ 2.21806786] [ 0.00188217]
Quantiles:
[(0.16, 0.0064525003290016522), (0.5, 0.021028858860394038), (0.84, 0.0355299854337459)]
Quantiles:
[(0.16, 2.5957093551132826), (0.5, 2.625740591066521), (0.84, 2.6601405033222347)]
Quantiles:
[(0.16, 0.38908874479449596), (0.5, 0.39987770966060932), (0.84, 0.40847956089912374)]
Quantiles:
[(0.16, 2.2129518977946407), (0.5, 2.2231688206991578), (0.84, 2.2340010530078009)]

Data closer to the center of the plate


In [8]:
load_data(subsample='lowlow')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx
ldiff= numpy.empty(len(ldata))
bdiff= numpy.empty(len(ldata))
rad= numpy.empty(len(ldata))
for ii in range(len(ldata)):
    tlcen, tbcen= apo.glonGlat(ldata[ii]['LOCATION_ID'])
    rad[ii]= apo.radius(ldata[ii]['LOCATION_ID'])
    ldiff[ii]= ldata['GLON'][ii]-tlcen
    bdiff[ii]= ldata['GLAT'][ii]-tbcen
ldiff[ldiff > 180.]-= 360.
ldiff[ldiff < -180.]+= 360.
bdiff[bdiff > 180.]-= 360.
bdiff[bdiff < -180.]+= 360.
ldata= ldata[ldiff**2.+bdiff**2. < rad**2./9.]
# Get the indices of the various subsamples defined above
data_highbIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[highbIndx]: data_highbIndx[ii]= True
data_outDiskIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[outDiskIndx]: data_outDiskIndx[ii]= True
data_betwDiskIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[betwDiskIndx]: data_betwDiskIndx[ii]= True
data_inDiskIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[inDiskIndx]: data_inDiskIndx[ii]= True
data_bulgeIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[bulgeIndx]: data_bulgeIndx[ii]= True
data_brightIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[brightIndx]: data_brightIndx[ii]= True
data_mediumIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[mediumIndx]: data_mediumIndx[ii]= True
data_faintIndx= numpy.zeros(len(ldata),dtype='bool')
for ii in range(len(ldata)):
    if ldata[ii]['LOCATION_ID'] in numpy.array(locations)[faintIndx]: data_faintIndx[ii]= True

In [9]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 5481.030660
         Iterations: 196
         Function evaluations: 327
Out[9]:
array([-0.28288218,  3.39248725,  0.38214087,  2.38909934, -0.14640433])

Mock data

Low-low-like sample


In [7]:
load_mock_data(subsample='lowlow',type='exp',nls=None)
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [8]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 185079.789735
         Iterations: 116
         Function evaluations: 204
Out[8]:
array([ 0.02943341,  3.32110685, -8.45113727])

In [9]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 184991.044292
         Iterations: 114
         Function evaluations: 203
Out[9]:
array([ 0.03542716,  3.34267477, -8.4524549 ])

In [10]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='drimmel03')


Optimization terminated successfully.
         Current function value: 187087.967151
         Iterations: 97
         Function evaluations: 182
Out[10]:
array([ 0.0914534 ,  3.19360957, -8.73397659])

In [16]:
fit(type='tribrokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 184171.506987
         Iterations: 247
         Function evaluations: 407
Out[16]:
array([ 0.1508909 ,  3.78737458,  0.21961129,  2.40328784, -0.03754447])

In [11]:
fit(type='tribrokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 185067.476357
         Iterations: 391
         Function evaluations: 644
Out[11]:
array([ 0.43552725,  3.47385497,  0.03305215,  1.64467369, -0.01443843])

In [12]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 185067.475907
         Iterations: 381
         Function evaluations: 607
/Library/Python/2.7/site-packages/MarkovPy-0.1-py2.7.egg/markovpy/ensemble.py:234: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.
  if lnprob == None:

Mean, standard devs, acor tau, acor mean, acor s ...
-0.545731640637 0.362895312605 [ 75.53428242] [-0.54573164] [ 0.03155097]
3.47407062724 0.05572849776 [ 45.53521729] [ 3.47407063] [ 0.00376215]
0.0294291596671 0.0166474642276 [ 23.38810422] [ 0.02942916] [ 0.00080547]
1.60704756096 0.0868123068203 [ 29.16330995] [ 1.60704756] [ 0.00468397]
-0.0134458501951 0.0125203001362 [ 20.84610909] [-0.01344585] [ 0.00057193]
Quantiles:
[(0.16, -0.8236534535138258), (0.5, -0.51259442997185656), (0.84, -0.30346131703269663)]
Quantiles:
[(0.16, 3.4201435449597279), (0.5, 3.4736908057895413), (0.84, 3.5271403270316042)]
Quantiles:
[(0.16, 0.027415884588135542), (0.5, 0.03170369121249858), (0.84, 0.036054313587124014)]
Quantiles:
[(0.16, 1.5455250891384602), (0.5, 1.6185930937951383), (0.84, 1.6769262388962189)]
Quantiles:
[(0.16, -0.018182403865695151), (0.5, -0.014457535914653588), (0.84, -0.010085865082496431)]

In [14]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 184975.329658
         Iterations: 195
         Function evaluations: 326
Mean, standard devs, acor tau, acor mean, acor s ...
0.324144859531 0.578241321553 [ 62.49387972] [ 0.32414486] [ 0.04572721]
3.58070201067 0.0510896556438 [ 37.95084066] [ 3.58070201] [ 0.00314857]
0.0295477608409 0.0151442320148 [ 83.08431483] [ 0.02954776] [ 0.00138101]
1.274758624 0.763363596621 [ 117.79148648] [ 1.27475862] [ 0.08282763]
-0.0228618247849 0.0144079586087 [ 29.34269054] [-0.02286182] [ 0.00078085]
Quantiles:
[(0.16, 0.13193456888648331), (0.5, 0.20083495736561627), (0.84, 0.74123787478041381)]
Quantiles:
[(0.16, 3.5276937913794293), (0.5, 3.5819812431373053), (0.84, 3.6319176270582112)]
Quantiles:
[(0.16, 0.017804413851285297), (0.5, 0.031688014268761201), (0.84, 0.038915852710648575)]
Quantiles:
[(0.16, 0.32173825533635542), (0.5, 1.3052144618392525), (0.84, 2.0658295302642276)]
Quantiles:
[(0.16, -0.025383787507966195), (0.5, -0.021897897159437844), (0.84, -0.018183127608442626)]

In [15]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='drimmel03')


Optimization terminated successfully.
         Current function value: 187029.007735
         Iterations: 134
         Function evaluations: 236
Mean, standard devs, acor tau, acor mean, acor s ...
0.809282446822 0.985584227016 [ 101.01099296] [ 0.80928245] [ 0.09906992]
3.6199252462 0.0608881326964 [ 85.93031645] [ 3.61992525] [ 0.00564672]
0.0909879479123 0.0117212904452 [ 14.96589585] [ 0.09098795] [ 0.00045359]
1.44020645176 0.515660794752 [ 101.17851] [ 1.44020645] [ 0.05189483]
-0.0401002457098 0.0155397974992 [ 30.18408773] [-0.04010025] [ 0.00085417]
Quantiles:
[(0.16, -0.3103527172494101), (0.5, 1.0487846085983625), (0.84, 1.8455920125645331)]
Quantiles:
[(0.16, 3.5637188267608395), (0.5, 3.6132438307017858), (0.84, 3.6767750334051392)]
Quantiles:
[(0.16, 0.086131452711034812), (0.5, 0.09080519393027911), (0.84, 0.094824977362953672)]
Quantiles:
[(0.16, 0.98462270566155619), (0.5, 1.4979653915817035), (0.84, 1.8742133907448688)]
Quantiles:
[(0.16, -0.045371382844671938), (0.5, -0.039771740346095971), (0.84, -0.036040887610369464)]

In [9]:
load_mock_data(subsample='lowlow',type='brokenexp',nls=None)
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [10]:
fit(type='tribrokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 184227.262532
         Iterations: 306
         Function evaluations: 497
Out[10]:
array([ 0.16508863,  3.69855862,  0.22165393,  2.40187367, -0.03175408])

In [41]:
sample(type='tribrokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 184253.093453
         Iterations: 113
         Function evaluations: 193
Mean, standard devs, acor tau, acor mean, acor s ...
0.171131658183 0.0251019615374 [ 46.64039874] [ 0.17113166] [ 0.00171514]
3.32460269869 0.043831039205 [ 40.63117333] [ 3.3246027] [ 0.00279526]
0.208999083101 0.0181224126869 [ nan] [ 0.20899908] [ nan]
2.39616903104 0.0168256055291 [ 28.5607251] [ 2.39616903] [ 0.00089962]
Quantiles:
[(0.16, 0.15699138882077474), (0.5, 0.16649311339017769), (0.84, 0.17760894082015916)]
Quantiles:
[(0.16, 3.2920709253357181), (0.5, 3.3278915419564372), (0.84, 3.3602074615928776)]
Quantiles:
[(0.16, 0.19740654017416898), (0.5, 0.21217926038008994), (0.84, 0.22221880349104223)]
Quantiles:
[(0.16, 2.3924729038440375), (0.5, 2.3980130949089116), (0.84, 2.402826434777571)]

In [61]:
load_mock_data(subsample='lowlow',type='brokenexpflare',nls=21)
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [50]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 188451.275958
         Iterations: 112
         Function evaluations: 197
Out[50]:
array([-0.16692518,  2.47618834,  0.22724762,  2.39634605])

In [49]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 188115.273896
         Iterations: 190
         Function evaluations: 316
Out[49]:
array([-0.16520695,  3.66034311,  0.22546427,  2.40635611, -0.12688133])

In [54]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 188115.273896
         Iterations: 190
         Function evaluations: 316
Mean, standard devs, acor tau, acor mean, acor s ...
-0.169966114325 0.0251584681151 53.1479615199 -0.169966114325 0.0018349458014
3.71985085748 0.123250844366 356.067799678 3.71985085748 0.0232618817853
0.211589939405 0.0300675174897 196.167114339 0.211589939405 0.00421259459275
2.40498969854 0.012729522749 62.9063378482 2.40498969854 0.0010100459622
-0.134576214427 0.021466396647 190.695043536 -0.134576214427 0.00296555473022
Quantiles:
[(0.16, -0.1818717635732966), (0.5, -0.16799216302125394), (0.84, -0.15754496767104925)]
Quantiles:
[(0.16, 3.6112674917651519), (0.5, 3.6918662334234411), (0.84, 3.8313169065600063)]
Quantiles:
[(0.16, 0.19442788553566673), (0.5, 0.21800220343390006), (0.84, 0.23071805844798993)]
Quantiles:
[(0.16, 2.3979649343975411), (0.5, 2.4048952996336128), (0.84, 2.4107247229552509)]
Quantiles:
[(0.16, -0.15370625253187678), (0.5, -0.12976273052446355), (0.84, -0.12321875141100361)]

In [62]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 188451.275958
         Iterations: 112
         Function evaluations: 197
Mean, standard devs, acor tau, acor mean, acor s ...
-0.16282689689 0.0209312512488 37.533586885 -0.16282689689 0.00128289724618
2.46872820292 0.0400948193051 139.328826926 2.46872820292 0.00473466861191
0.230341446326 0.0185337287086 23.1613730411 0.230341446326 0.000892339070863
2.40051693435 0.014492095096 81.2556922972 2.40051693435 0.0013069525914
Quantiles:
[(0.16, -0.17434465956244416), (0.5, -0.16465027000325755), (0.84, -0.15448788129777696)]
Quantiles:
[(0.16, 2.4480663427694318), (0.5, 2.4751571707020532), (0.84, 2.4975302998653994)]
Quantiles:
[(0.16, 0.22055447604588135), (0.5, 0.23095111213294375), (0.84, 0.24148123904346619)]
Quantiles:
[(0.16, 2.3935846722937471), (0.5, 2.3988111687801652), (0.84, 2.4055561888548977)]

In [63]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 188051.270607
         Iterations: 182
         Function evaluations: 303
Mean, standard devs, acor tau, acor mean, acor s ...
-0.147384497506 0.0147726005523 27.4270272609 -0.147384497506 0.000773930519771
3.78640870698 0.0772498856489 186.2081476 3.78640870698 0.0105420637714
0.222229773503 0.0273610772673 3.36471529329 0.222229773503 0.000502094043704
2.41032327664 0.0253778482619 1.70126549334 2.41032327664 0.000331171954001
-0.132914108347 0.0253355687847 69.6162696298 -0.132914108347 0.00211491714962
Quantiles:
[(0.16, -0.15590124536934818), (0.5, -0.14622044002975507), (0.84, -0.1377362818698144)]
Quantiles:
[(0.16, 3.7093266751526683), (0.5, 3.777202127819395), (0.84, 3.8653061017799084)]
Quantiles:
[(0.16, 0.21120137677325435), (0.5, 0.22097359265392735), (0.84, 0.23287587625954745)]
Quantiles:
[(0.16, 2.4047207171630851), (0.5, 2.4098848754422209), (0.84, 2.4150616525824864)]
Quantiles:
[(0.16, -0.14136204227798407), (0.5, -0.13509008236922362), (0.84, -0.12983856362343724)]

In [64]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='drimmel03')


Optimization terminated successfully.
         Current function value: 189536.892102
         Iterations: 216
         Function evaluations: 343
Mean, standard devs, acor tau, acor mean, acor s ...
-0.148284045477 0.0196191446291 90.0426502011 -0.148284045477 0.00186249734884
3.7824057913 0.0558248773322 37.4429136729 3.7824057913 0.00341401611204
0.317412182324 0.0242658284256 138.054678166 0.317412182324 0.00285235606336
2.41398823666 0.01436333733 125.039500893 2.41398823666 0.00160687562492
-0.151081909377 0.0133368547419 31.2023584303 -0.151081909377 0.000745256318949
Quantiles:
[(0.16, -0.16059832363137891), (0.5, -0.15034626160093972), (0.84, -0.13955847029153479)]
Quantiles:
[(0.16, 3.732570529783346), (0.5, 3.7761205430320959), (0.84, 3.8418308686204243)]
Quantiles:
[(0.16, 0.30270833943711056), (0.5, 0.31347067863162809), (0.84, 0.32523694061347985)]
Quantiles:
[(0.16, 2.4070956189535324), (0.5, 2.4112598710663087), (0.84, 2.4167780446901395)]
Quantiles:
[(0.16, -0.15596277974537709), (0.5, -0.15107884727645265), (0.84, -0.14501336980553478)]

Solar-like sample


In [16]:
load_mock_data(subsample='solar',type='exp')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [26]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 177760.196845
         Iterations: 95
         Function evaluations: 171
Out[26]:
array([  0.36439783,   3.40467983, -10.01791209])

In [27]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 177246.236668
         Iterations: 102
         Function evaluations: 181
Out[27]:
array([ 0.38597792,  3.52225819, -9.45552482])

In [28]:
fit(type='expplusconst',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='drimmel03')


Optimization terminated successfully.
         Current function value: 178150.442614
         Iterations: 103
         Function evaluations: 179
Out[28]:
array([ 0.41310863,  3.44022431, -9.57523106])

In [29]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 177186.898826
         Iterations: 168
         Function evaluations: 286
Out[29]:
array([-0.28224862,  3.67689757,  0.38699735,  1.29205818, -0.03296806])

In [30]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 177704.459663
         Iterations: 317
         Function evaluations: 512
Out[30]:
array([-0.02880875,  3.48784184,  0.37971572,  1.68196841, -0.01504889])

In [31]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 177704.459663
         Iterations: 317
         Function evaluations: 512
Mean, standard devs, acor tau, acor mean, acor s ...
-0.0151771550549 0.0509315372563 [ 69.49007803] [-0.01517716] [ 0.00424708]
3.49120728846 0.038333717455 [ 32.11255383] [ 3.49120729] [ 0.00217264]
0.380924746987 0.0168954759571 [ 19.45111629] [ 0.38092475] [ 0.00074552]
1.69289954373 0.0249033596516 [ 68.04492827] [ 1.69289954] [ 0.00205457]
-0.0144033193656 0.0150141505766 [ 21.57094043] [-0.01440332] [ 0.00069767]
Quantiles:
[(0.16, -0.064646889501986604), (0.5, -0.013853255215274467), (0.84, 0.033429501159520689)]
Quantiles:
[(0.16, 3.4563053577831964), (0.5, 3.4908333726548255), (0.84, 3.5232761389598553)]
Quantiles:
[(0.16, 0.37594595064949032), (0.5, 0.37972151010332722), (0.84, 0.38360977952442593)]
Quantiles:
[(0.16, 1.6714922205990705), (0.5, 1.6913456904418425), (0.84, 1.712834158204688)]
Quantiles:
[(0.16, -0.018315539352490237), (0.5, -0.015133993641967897), (0.84, -0.011748910669009825)]

In [32]:
load_mock_data(subsample='solar',type='brokenexp')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [33]:
fit(type='tribrokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 177480.367742
         Iterations: 322
         Function evaluations: 530
Out[33]:
array([ 0.44811274,  3.57149019,  0.4396872 ,  1.89409139, -0.01737202])

In [21]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 177480.367742
         Iterations: 322
         Function evaluations: 530
/Library/Python/2.7/site-packages/MarkovPy-0.1-py2.7.egg/markovpy/ensemble.py:234: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.
  if lnprob == None:

Mean, standard devs, acor tau, acor mean, acor s ...
-0.107832582816 0.0960118519455 [ 52.97973818] [-0.10783258] [ 0.00699111]
3.56365333321 0.0472593610115 [ 41.23558301] [ 3.56365333] [ 0.00303409]
0.487871095151 0.0215882898051 [ 30.79523302] [ 0.4878711] [ 0.00119856]
2.04674688925 0.0448813276473 [ nan] [ 2.04674689] [ nan]
-0.0176133409259 0.0103280952527 [ 21.74119135] [-0.01761334] [ 0.00048181]
Quantiles:
[(0.16, -0.11937411042725891), (0.5, -0.081625213383463874), (0.84, -0.054310975871415944)]
Quantiles:
[(0.16, 3.5229821357016471), (0.5, 3.559683996489988), (0.84, 3.6002549716063355)]
Quantiles:
[(0.16, 0.48342624550268565), (0.5, 0.49154066569557076), (0.84, 0.49851259134313208)]
Quantiles:
[(0.16, 2.0383510057963852), (0.5, 2.0582148819961219), (0.84, 2.0717163396257603)]
Quantiles:
[(0.16, -0.021553177718829718), (0.5, -0.017670251272719179), (0.84, -0.013806124140726192)]

In [65]:
load_mock_data(subsample='solar',type='brokenexpflare')
fitIndx= None #True-highbIndx
data_fitIndx= None #True-data_highbIndx

In [56]:
fit(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 179469.334593
         Iterations: 152
         Function evaluations: 259
Out[56]:
array([-0.43008419,  3.05855709,  0.44100788,  1.88579062])

In [57]:
fit(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx)


Optimization terminated successfully.
         Current function value: 179074.052061
         Iterations: 301
         Function evaluations: 491
Out[57]:
array([-0.46815121,  3.55282787,  0.43789233,  1.88983474, -0.10997212])

In [58]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000)


Optimization terminated successfully.
         Current function value: 179074.052061
         Iterations: 301
         Function evaluations: 491
Mean, standard devs, acor tau, acor mean, acor s ...
-0.223569442661 0.140010469252 493.25281277 -0.223569442661 0.0311043979225
3.54327294543 0.0413091194023 58.858989333 3.54327294543 0.00316990670814
0.465964421366 0.0265525659924 303.035320907 0.465964421366 0.00462384416638
1.9867829595 0.0632241336291 493.314389377 1.9867829595 0.0140466678404
-0.108999943704 0.0175856827796 1.73794695905 -0.108999943704 0.000231934688084
Quantiles:
[(0.16, -0.4384117356309829), (0.5, -0.14696072028670348), (0.84, -0.12239003893459369)]
Quantiles:
[(0.16, 3.5073456742811935), (0.5, 3.5406614359338482), (0.84, 3.5804311211012507)]
Quantiles:
[(0.16, 0.43790513235368722), (0.5, 0.47613983363256018), (0.84, 0.48264745971030198)]
Quantiles:
[(0.16, 1.8913574910384434), (0.5, 2.021744144898757), (0.84, 2.0325053113820681)]
Quantiles:
[(0.16, -0.11419784728777117), (0.5, -0.10917331576840575), (0.84, -0.10371715422799736)]

In [66]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='marshall06')


Optimization terminated successfully.
         Current function value: 178743.392768
         Iterations: 228
         Function evaluations: 369
Mean, standard devs, acor tau, acor mean, acor s ...
0.0140840614063 0.0535102406772 100.665782008 0.0140840614063 0.00537085762991
3.67563688487 0.0368142239522 17.9317273985 3.67563688487 0.00155922651369
0.483428420339 0.0152034281643 28.5594624198 0.483428420339 0.000812822975165
2.05935223024 0.0275198291789 61.7648378553 2.05935223024 0.00216364128452
-0.12373152557 0.0121797457723 20.8228765768 -0.12373152557 0.000556051054971
Quantiles:
[(0.16, -0.0050955476110121955), (0.5, 0.023266371938169755), (0.84, 0.044730816724795147)]
Quantiles:
[(0.16, 3.6432166974071283), (0.5, 3.6765615500239095), (0.84, 3.7094640084366359)]
Quantiles:
[(0.16, 0.47798429067858994), (0.5, 0.48470112568007456), (0.84, 0.49087089870293427)]
Quantiles:
[(0.16, 2.0475495040795617), (0.5, 2.0629764096977095), (0.84, 2.0751876040806616)]
Quantiles:
[(0.16, -0.12809716492463952), (0.5, -0.12439048899494319), (0.84, -0.12033915038697153)]

In [67]:
sample(type='brokenexpflare',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=10000,dmap='drimmel03')


Optimization terminated successfully.
         Current function value: 179445.509179
         Iterations: 348
         Function evaluations: 548
Mean, standard devs, acor tau, acor mean, acor s ...
0.134491229918 0.0235093362574 1.94477725646 0.134491229918 0.000327977025664
3.56168204743 0.0328602776305 9.30021151458 3.56168204743 0.00100228909041
0.528711011014 0.0219342909502 74.3553935235 0.528711011014 0.00189217609029
2.15259325213 0.0210225198661 24.4642096024 2.15259325213 0.00104019907357
-0.127068949574 0.0152667940071 22.2589568871 -0.127068949574 0.000720621939544
Quantiles:
[(0.16, 0.11869713698558124), (0.5, 0.1354114526417354), (0.84, 0.14964257058733546)]
Quantiles:
[(0.16, 3.531406606086557), (0.5, 3.5617112693288648), (0.84, 3.5929997686514494)]
Quantiles:
[(0.16, 0.52296169206912946), (0.5, 0.53129478623436044), (0.84, 0.5383386390483218)]
Quantiles:
[(0.16, 2.1395694763213595), (0.5, 2.1532375464181333), (0.84, 2.1647885554129753)]
Quantiles:
[(0.16, -0.13181459533983503), (0.5, -0.12787875460489823), (0.84, -0.12357004776400669)]

In [60]:
sample(type='brokenexp',fitIndx=fitIndx,data_fitIndx=data_fitIndx,nsamples=20000)


Optimization terminated successfully.
         Current function value: 179469.334593
         Iterations: 152
         Function evaluations: 259
Mean, standard devs, acor tau, acor mean, acor s ...
-0.0688129761897 0.0542525946508 175.564720791 -0.0688129761897 0.00508375104232
3.05367453906 0.0251017133726 16.3315081922 3.05367453906 0.000717175916956
0.484650485128 0.011991234059 14.6772675124 0.484650485128 0.000324904897464
2.04456611012 0.0256672150416 38.6652550275 2.04456611012 0.00112857242227
Quantiles:
[(0.16, -0.096451879671631185), (0.5, -0.069823083048978385), (0.84, -0.033610212111668425)]
Quantiles:
[(0.16, 3.0310386966396514), (0.5, 3.0540413871500633), (0.84, 3.0764222958604317)]
Quantiles:
[(0.16, 0.4773321911293561), (0.5, 0.4840941105380514), (0.84, 0.49177196686895908)]
Quantiles:
[(0.16, 2.0289001705651888), (0.5, 2.0412682198010672), (0.84, 2.0635629525819414)]

MAPs: fit with broken, flaring exponential


In [47]:
try:
    reload(define_rcsample)
except NameError:
    import define_rcsample
maps= define_rcsample.MAPs()

In [260]:
def fitmap(tdata,type='brokenexp',dmap='marshall06'):
    if dmap == 'green15':
        tlocations= copy.deepcopy(locations)
        teffsel= copy.deepcopy(effsel)
        tdistmods= copy.deepcopy(distmods)
    elif dmap.lower() == 'marshall06':        
        tlocations= copy.deepcopy(mlocations)
        teffsel= copy.deepcopy(meffsel)
        tdistmods= copy.deepcopy(mdistmods)
    elif dmap.lower() == 'zero':        
        tlocations= copy.deepcopy(zlocations)
        teffsel= copy.deepcopy(zeffsel)
        tdistmods= copy.deepcopy(zdistmods)
    bf= fitDens.fitDens(tdata,numpy.array(tlocations),copy.deepcopy(teffsel),tdistmods,type=type,verbose=False)
    return bf

In [107]:
def samplemap(tdata,type='brokenexp',dmap='marshall06',nsamples=3000):
    if dmap == 'green15':
        tlocations= copy.deepcopy(locations)
        teffsel= copy.deepcopy(effsel)
        tdistmods= copy.deepcopy(distmods)
    elif dmap.lower() == 'marshall06':        
        tlocations= copy.deepcopy(mlocations)
        teffsel= copy.deepcopy(meffsel)
        tdistmods= copy.deepcopy(mdistmods)
    elif dmap.lower() == 'zero':        
        tlocations= copy.deepcopy(zlocations)
        teffsel= copy.deepcopy(zeffsel)
        tdistmods= copy.deepcopy(zdistmods)
    bf, samples= fitDens.fitDens(tdata,numpy.array(tlocations),copy.deepcopy(teffsel),tdistmods,type=type,verbose=False,
                                 nsamples=nsamples,mcmc=True)
    return samples

In [264]:
type= 'brokenexpflare'
out= []
for map in maps.map():
    out.append(fitmap(map,type=type,dmap='marshall06'))


/Library/Python/2.7/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)


In [281]:
type= 'tribrokenexpflare'
nsamples= 5000
outsamples= []
for map in maps.map():
    outsamples.append(samplemap(map,type=type,dmap='marshall06',nsamples=nsamples))


densprofiles.py:298: RuntimeWarning: overflow encountered in exp
  tinvhz= params[1]*numpy.exp((R-_R0)*params[4])

densprofiles.py:298: RuntimeWarning: overflow encountered in multiply
  tinvhz= params[1]*numpy.exp((R-_R0)*params[4])

densprofiles.py:303: RuntimeWarning: overflow encountered in multiply
  return numpy.fabs(tinvhz)/2.*out*numpy.exp(-tinvhz*numpy.fabs(z))

fitDens.py:101: RuntimeWarning: divide by zero encountered in log
  return numpy.sum(datadens)-len(dataR)*numpy.log(teffvol)


In [284]:
figsize(6,6)
maps.plot(numpy.median(numpy.exp(numpy.array(outsamples)[:,3]),axis=-1),
          vmin=4.,vmax=12.,minnstar=15,zlabel=r'$R_{\mathrm{max}}\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [285]:
maps.plot(numpy.std(numpy.exp(numpy.array(outsamples)[:,3]),axis=-1),
          vmin=0.,vmax=2.,minnstar=15,zlabel=r'$R_{\mathrm{max}}\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [287]:
maps.plot(numpy.median(numpy.array(outsamples)[:,1],axis=-1),
          vmin=1.,vmax=5.,minnstar=15,zlabel=r'$1/h_Z\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [288]:
maps.plot(numpy.std(numpy.array(outsamples)[:,1],axis=-1),
          vmin=0.,vmax=.5,minnstar=15,zlabel=r'$\sigma 1/h_Z\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [292]:
maps.plot(-numpy.median(numpy.array(outsamples)[:,4],axis=-1),
          vmin=-0.2,vmax=0.2,minnstar=15,zlabel=r'$1/h_{\mathrm{flare}}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [295]:
maps.plot(numpy.std(numpy.array(outsamples)[:,4],axis=-1),
          vmin=0.,vmax=0.2,minnstar=15,zlabel=r'$1/h_{\mathrm{flare}}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [289]:
maps.plot(numpy.median(numpy.array(outsamples)[:,2],axis=-1),
          vmin=0.,vmax=1.,minnstar=15,zlabel=r'$1/h_{R,\mathrm{out}}\,(\mathrm{kpc}^{-1})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [290]:
plotthis= numpy.median(numpy.array(outsamples)[:,0],axis=-1)
plotthis[numpy.median(numpy.exp(numpy.array(outsamples)[:,3]),axis=-1) < 6.]= numpy.nan
maps.plot(plotthis,
          vmin=0.,vmax=1.,minnstar=15,zlabel=r'$1/h_{R,\mathrm{in}}\,(\mathrm{kpc}^{-1})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [265]:
figsize(6,6)
plotthis= numpy.fabs(numpy.array(out)[:,0])
plotthis[numpy.exp(numpy.array(out)[:,3]) < 5.]= numpy.nan
maps.plot(plotthis,
          vmin=0.,vmax=1.,minnstar=15,zlabel=r'$1/h_{R,\mathrm{in}}\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [267]:
maps.plot(numpy.array(out)[:,1],vmin=1.,vmax=5.,minnstar=15,zlabel=r'$1/h_Z\,(\mathrm{kpc})$')


Out[267]:
<matplotlib.image.AxesImage at 0x11892ad10>

In [268]:
maps.plot(numpy.exp(numpy.array(out)[:,3]),vmin=4.,vmax=12.,minnstar=15,zlabel=r'$R_{\mathrm{max}}\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [269]:
figsize(6,6)
maps.plot(-numpy.log(0.5)*(1./numpy.array(out)[:,0]+1./numpy.array(out)[:,2]),vmin=2.,vmax=8.,
          minnstar=15,zlabel=r'$\Delta R\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [104]:
maps.plot(numpy.array(out)[:,2],
          vmin=0.,vmax=1.,minnstar=15,zlabel=r'$1/h_{R,\mathrm{out}}\,(\mathrm{kpc})$')


Out[104]:
<matplotlib.image.AxesImage at 0x110ed3890>

In [105]:
maps.plot(numpy.array(out)[:,2]/numpy.array(out)[:,0],
          vmin=0.,vmax=2,minnstar=15,zlabel=r'$h_{R,\mathrm{in}}/h_{R,\mathrm{out}}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [273]:
maps.plot(-numpy.array(out)[:,4],
          vmin=-0.2,vmax=0.2,minnstar=15,zlabel=r'$1/h_{\mathrm{flare}}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])


PDFs


In [301]:
mapsamples= numpy.reshape(numpy.array(outsamples),(11,7,5,nsamples))

In [302]:
def plot_map_mcmc(fehindx,afeindx):
    labels= []
    for ii in range(mapsamples.shape[2]): labels.append(r"$\mathrm{param}\ %i$" % ii)
    triangle.corner(mapsamples[fehindx,afeindx].T,quantiles=[0.16, 0.5, 0.84],labels=labels,
                    show_titles=True, title_args={"fontsize": 12},bins=21)

In [308]:
plot_map_mcmc(9,1)


Quantiles:
[(0.16, 0.097392714907935357), (0.5, 0.3588603700134797), (0.84, 1.1033064989870696)]
Quantiles:
[(0.16, 3.3408684262999531), (0.5, 3.5238334369677617), (0.84, 3.6888809679392929)]
Quantiles:
[(0.16, 0.65989485401116799), (0.5, 0.71004258757729866), (0.84, 0.8587818432381068)]
Quantiles:
[(0.16, 0.10246921538785256), (0.5, 0.801224154622173), (0.84, 1.870780930722534)]
Quantiles:
[(0.16, -0.15185077303454009), (0.5, -0.10113009874484358), (0.84, -0.060747549472980757)]

In [305]:
plot_map_mcmc(6,5)


Quantiles:
[(0.16, 0.25637726502555291), (0.5, 0.81572820516905864), (0.84, 1.5150728346937827)]
Quantiles:
[(0.16, 2.5530649981121591), (0.5, 3.7324271589055802), (0.84, 5.5311637717288491)]
Quantiles:
[(0.16, 0.1470122878396235), (0.5, 0.36694580067322724), (0.84, 0.68760092123334693)]
Quantiles:
[(0.16, 0.36096798200047364), (0.5, 1.279376693022102), (0.84, 2.1156373097349768)]
Quantiles:
[(0.16, -0.535679388859848), (0.5, -0.35938805202781204), (0.84, -0.16043512392861908)]

In [309]:
plot_map_mcmc(1,4)


Quantiles:
[(0.16, 0.10654337504765732), (0.5, 0.3780473773794224), (0.84, 1.2921937096426526)]
Quantiles:
[(0.16, 0.24906192387515), (0.5, 0.45884727219204813), (0.84, 0.76253107984398094)]
Quantiles:
[(0.16, 0.14649209369604421), (0.5, 0.37776819167699693), (0.84, 1.0023805812566491)]
Quantiles:
[(0.16, 1.2919830862641843), (0.5, 2.254645439988562), (0.84, 2.4852993110578687)]
Quantiles:
[(0.16, -0.069824845572100502), (0.5, 0.15598116263011141), (0.84, 0.36615082023047252)]

In [310]:
plot_map_mcmc(4,4)


Quantiles:
[(0.16, 0.64960894617004761), (0.5, 1.2850580105018994), (0.84, 1.8050674568594536)]
Quantiles:
[(0.16, 1.1735459777742396), (0.5, 1.2960101421143801), (0.84, 1.4274296929383121)]
Quantiles:
[(0.16, 0.40511507113863315), (0.5, 0.45118975403366623), (0.84, 0.49660737265534222)]
Quantiles:
[(0.16, 0.47221883557733735), (0.5, 1.1023146052322474), (0.84, 1.4634395805847125)]
Quantiles:
[(0.16, -0.023803797219824112), (0.5, 0.024257603683695995), (0.84, 0.082466054952880175)]

MAPs: fit with broken exponential with two scale heights


In [352]:
type= 'tribrokentwoexp'
nsamples= 5000
outsamples_twoexp= []
for map in maps.map():
    outsamples_twoexp.append(samplemap(map,type=type,dmap='marshall06',nsamples=nsamples))

In [353]:
maps.plot(numpy.median(numpy.array(outsamples_twoexp)[:,1],axis=-1),
          vmin=1.,vmax=4.,minnstar=15,zlabel=r'$1/h_Z\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [381]:
maps.plot(numpy.std(numpy.array(outsamples_twoexp)[:,1],axis=-1),
          vmin=0.,vmax=1.,minnstar=15,zlabel=r'$1/h_Z\,(\mathrm{kpc})$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [357]:
figsize(6,6)
maps.plot(numpy.median(numpy.array(outsamples_twoexp)[:,5]/numpy.array(outsamples_twoexp)[:,1],axis=-1),
          vmin=0.5,vmax=1.5,minnstar=15,zlabel=r'$h_{Z,1}/h_{Z,2}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [358]:
maps.plot(numpy.std(numpy.array(outsamples_twoexp)[:,5]/numpy.array(outsamples_twoexp)[:,1],axis=-1),
          vmin=0.,vmax=1.,minnstar=15,zlabel=r'$\sigma h_{Z,1}1/h_{Z,2}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [359]:
maps.plot(numpy.median(densprofiles.ilogit(numpy.array(outsamples_twoexp)[:,4]),axis=-1),
          vmin=0.,vmax=.5,minnstar=15,zlabel=r'$1/h_{Z,2}\,(\mathrm{kpc})^{-1}$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [367]:
figsize(6,6)
maps.plot(numpy.median((1.-densprofiles.ilogit(numpy.array(outsamples_twoexp)[:,4]))*numpy.array(outsamples_twoexp)[:,1]
                       +(densprofiles.ilogit(numpy.array(outsamples_twoexp)[:,4]))*numpy.array(outsamples_twoexp)[:,5],axis=-1),
          vmin=0.,vmax=5.,minnstar=15,zlabel=r'$1/h_Z$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [379]:
figsize(6,6)
maps.plot(numpy.std((1.-densprofiles.ilogit(numpy.array(outsamples_twoexp)[:,4]))*numpy.array(outsamples_twoexp)[:,1]
                       +(densprofiles.ilogit(numpy.array(outsamples_twoexp)[:,4]))*numpy.array(outsamples_twoexp)[:,5],axis=-1),
          vmin=0.,vmax=.5,minnstar=15,zlabel=r'$1/h_Z$')
bovy_plot.scatterplot(maps.data[define_rcsample._FEHTAG],maps.data[define_rcsample._AFETAG],contours=True,overplot=True,
                      levels=[0.68,0.95,0.99,1.01],justcontours=True,aspect=2.,bins=21,
                      xrange=[maps.xmin,maps.xmax],yrange=[maps.ymin,maps.ymax])



In [389]:
bovy_plot.bovy_plot(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,1],
                    numpy.median(numpy.array(outsamples_twoexp)[:,5]/numpy.array(outsamples_twoexp)[:,1],axis=-1),
        c=densprofiles.ilogit(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,4]),scatter=True,colorbar=True,edgecolor='none',
        s=30.,xrange=[0.,5.],yrange=[0.,2.],zorder=1)
errorbar(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,1],numpy.median(numpy.array(outsamples_twoexp)[:,5]/numpy.array(outsamples_twoexp)[:,1],axis=-1),
         xerr=numpy.std(numpy.array(outsamples_twoexp),axis=-1)[:,1],yerr=numpy.std(numpy.array(outsamples_twoexp)[:,5]/numpy.array(outsamples_twoexp)[:,1],axis=-1),
         marker='None',ls='None',color='k',zorder=0,lw=0.5)
plot((0,10),(1,1))


Out[389]:
[<matplotlib.lines.Line2D at 0x119e27850>]

In [399]:
figsize(12,6)
subplot(1,2,1)
bovy_plot.bovy_plot(numpy.median(1./numpy.array(outsamples_twoexp),axis=-1)[:,1],
                    numpy.median(1./numpy.array(outsamples)[:,1],axis=-1),
        c=densprofiles.ilogit(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,4]),scatter=True,colorbar=True,edgecolor='none',
        s=30.,xrange=[0.,1.],yrange=[0.,1.],zorder=1,gcf=True)
errorbar(numpy.median(1./numpy.array(outsamples_twoexp),axis=-1)[:,1],numpy.median(1./numpy.array(outsamples)[:,1],axis=-1),
         yerr=numpy.std(1./numpy.array(outsamples)[:,1],axis=-1),
         marker='None',ls='None',color='k',zorder=0,lw=0.5)
plot((0,10),(0,10))
figsize(12,6)
subplot(1,2,2)
bovy_plot.bovy_plot(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,5],
                    numpy.median(numpy.array(outsamples)[:,1],axis=-1),
        c=densprofiles.ilogit(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,4]),scatter=True,colorbar=True,edgecolor='none',
        s=30.,xrange=[0.,5.],yrange=[0.,5.],zorder=1,gcf=True)
errorbar(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,5],numpy.median(numpy.array(outsamples)[:,1],axis=-1),
         yerr=numpy.std(numpy.array(outsamples)[:,1],axis=-1),
         marker='None',ls='None',color='k',zorder=0,lw=0.5)
plot((0,10),(0,10))


Out[399]:
[<matplotlib.lines.Line2D at 0x120a5ff90>]

In [397]:
bovy_plot.bovy_plot(numpy.median(1./numpy.array(outsamples)[:,1],axis=-1),
                    numpy.std(1./numpy.array(outsamples)[:,1],axis=-1),
        c=densprofiles.ilogit(numpy.median(numpy.array(outsamples_twoexp),axis=-1)[:,4]),scatter=True,colorbar=True,edgecolor='none',
        s=30.,xrange=[0.,1.],yrange=[0.,.4],zorder=1)


Out[397]:
<matplotlib.collections.PathCollection at 0x11cf5d150>

In [401]:
mapsamples= numpy.reshape(numpy.array(outsamples_twoexp),(11,7,6,nsamples))

In [403]:
plot_map_mcmc(6,1)


Quantiles:
[(0.16, 0.15527917217288353), (0.5, 0.2156610744969874), (0.84, 0.28882761988911709)]
Quantiles:
[(0.16, 2.8860815061620073), (0.5, 3.0390411908063073), (0.84, 3.1715502474205532)]
Quantiles:
[(0.16, 0.70872844490496423), (0.5, 0.74792966403392946), (0.84, 0.78848201355304115)]
Quantiles:
[(0.16, 2.2032816143418015), (0.5, 2.220458860222541), (0.84, 2.2392789454836532)]
Quantiles:
[(0.16, -1.8561606801315755), (0.5, -0.25033534150463632), (0.84, -0.11327105571428416)]
Quantiles:
[(0.16, 2.8862121912935597), (0.5, 3.1065612476394513), (0.84, 3.4635890788799539)]

In [ ]: