In [2]:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
%pylab inline --no-import-all
We assume sinusoidal trajectory
In [3]:
m = 10000 # timesteps
dt = 1/ 250.0 # update loop at 250Hz
t = np.arange(m) * dt
freq = 0.1 # Hz
amplitude = 0.5 # meter
alt_true = 405 + amplitude * np.cos(2 * np.pi * freq * t)
height_true = 5 + amplitude * np.cos(2 * np.pi * freq * t)
vel_true = - amplitude * (2 * np.pi * freq) * np.sin(2 * np.pi * freq * t)
acc_true = - amplitude * (2 * np.pi * freq)**2 * np.cos(2 * np.pi * freq * t)
plt.plot(t, height_true)
plt.plot(t, vel_true)
plt.plot(t, acc_true)
plt.legend(['elevation', 'velocity', 'acceleration'], loc='best')
plt.xlabel('time')
Out[3]:
In [4]:
sonar_sampling_period = 1 / 10.0 # sonar reading at 10Hz
# Sonar noise
sigma_sonar_true = 0.05 # in meters
meas_sonar = height_true[::(sonar_sampling_period/dt)] + sigma_sonar_true * np.random.randn(m // (sonar_sampling_period/dt))
t_meas_sonar = t[::(sonar_sampling_period/dt)]
plt.plot(t_meas_sonar, meas_sonar, 'or')
plt.plot(t, height_true)
plt.legend(['Sonar measure', 'Elevation (true)'])
plt.title("Sonar measurement")
plt.xlabel('time (s)')
plt.ylabel('alt (m)')
Out[4]:
In [5]:
baro_sampling_period = 1 / 10.0 # baro reading at 10Hz
# Baro noise
sigma_baro_true = 2.0 # in meters
meas_baro = alt_true[::(baro_sampling_period/dt)] + sigma_baro_true * np.random.randn(m // (baro_sampling_period/dt))
t_meas_baro = t[::(baro_sampling_period/dt)]
plt.plot(t_meas_baro, meas_baro, 'or')
plt.plot(t, alt_true)
plt.title("Baro measurement")
plt.xlabel('time (s)')
plt.ylabel('alt (m)')
Out[5]:
In [6]:
gps_sampling_period = 1 / 1.0 # gps reading at 1Hz
# GPS noise
sigma_gps_true = 5.0 # in meters
meas_gps = alt_true[::(gps_sampling_period/dt)] + sigma_gps_true * np.random.randn(m // (gps_sampling_period/dt))
t_meas_gps = t[::(gps_sampling_period/dt)]
plt.plot(t_meas_gps, meas_gps, 'or')
plt.plot(t, alt_true)
plt.title("GPS measurement")
plt.xlabel('time (s)')
plt.ylabel('alt (m)')
Out[6]:
In [7]:
gpsvel_sampling_period = 1 / 1.0 # gps reading at 1Hz
# GPS noise
sigma_gpsvel_true = 10.0 # in meters/s
meas_gpsvel = vel_true[::(gps_sampling_period/dt)] + sigma_gpsvel_true * np.random.randn(m // (gps_sampling_period/dt))
t_meas_gps = t[::(gps_sampling_period/dt)]
plt.plot(t_meas_gps, meas_gpsvel, 'or')
plt.plot(t, vel_true)
plt.title("GPS velocity measurement")
plt.xlabel('time (s)')
plt.ylabel('vel (m/s)')
Out[7]:
In [8]:
sigma_acc_true = 0.2 # in m.s^-2
acc_bias = 1.5
meas_acc = acc_true + sigma_acc_true * np.random.randn(m) + acc_bias
plt.plot(t, meas_acc, '.')
plt.plot(t, acc_true)
plt.title("Accelerometer measurement")
plt.xlabel('time (s)')
plt.ylabel('acc ($m.s^{-2}$)')
Out[8]:
Measures are done separately according to the refresh rate of each sensor
We measure the height from sonar
$$ y_{sonar} = H_{sonar} \cdot x $$$$ y_{sonar} = \left[ \matrix{ 0 & 1 & 0 & 0 } \right] \cdot x $$We measure the altitude from barometer
$$ y_{baro} = H_{baro} \cdot x $$$$ y_{baro} = \left[ \matrix{ 1 & 0 & 0 & 0 } \right] \cdot x $$We measure the altitude from gps
$$ y_{gps} = H_{gps} \cdot x $$$$ y_{gps} = \left[ \matrix{ 1 & 0 & 0 & 0 } \right] \cdot x $$We measure the velocity from gps
$$ y_{gpsvel} = H_{gpsvel} \cdot x $$$$ y_{gpsvel} = \left[ \matrix{ 0 & 0 & 1 & 0 } \right] \cdot x $$
In [9]:
x = np.matrix([0.0, 0.0, 0.0, 0.0]).T
print(x, x.shape)
In [10]:
P = np.diag([100.0, 100.0, 100.0, 100.0])
print(P, P.shape)
In [11]:
dt = 1 / 250.0 # Time step between filter steps (update loop at 250Hz)
A = np.matrix([[1.0, 0.0, dt, 0.5*dt**2],
[0.0, 1.0, dt, 0.5*dt**2],
[0.0, 0.0, 1.0, dt ],
[0.0, 0.0, 0.0, 1.0]])
print(A, A.shape)
In [12]:
B = np.matrix([[0.5*dt**2],
[0.5*dt**2],
[dt ],
[0.0]])
print(B, B.shape)
In [13]:
H_sonar = np.matrix([[0.0, 1.0, 0.0, 0.0]])
print(H_sonar, H_sonar.shape)
H_baro = np.matrix([[1.0, 0.0, 0.0, 0.0]])
print(H_baro, H_baro.shape)
H_gps = np.matrix([[1.0, 0.0, 0.0, 0.0]])
print(H_gps, H_gps.shape)
H_gpsvel = np.matrix([[0.0, 0.0, 1.0, 0.0]])
print(H_gpsvel, H_gpsvel.shape)
In [14]:
# sonar
sigma_sonar = sigma_sonar_true # sonar noise
R_sonar = np.matrix([[sigma_sonar**2]])
print(R_sonar, R_sonar.shape)
# baro
sigma_baro = sigma_baro_true # sonar noise
R_baro = np.matrix([[sigma_baro**2]])
print(R_baro, R_baro.shape)
# gps
sigma_gps = sigma_gps_true # sonar noise
R_gps = np.matrix([[sigma_gps**2]])
print(R_gps, R_gps.shape)
# gpsvel
sigma_gpsvel = sigma_gpsvel_true # sonar noise
R_gpsvel = np.matrix([[sigma_gpsvel**2]])
print(R_gpsvel, R_gpsvel.shape)
In [15]:
from sympy import Symbol, Matrix, latex
from sympy.interactive import printing
printing.init_printing()
dts = Symbol('\Delta t')
s1 = Symbol('\sigma_1') # drift of accelerometer bias
Qs = Matrix([[0.5*dts**2], [0.5*dts**2], [dts], [1.0]])
Qs*Qs.T*s1**2
Out[15]:
In [16]:
sigma_acc_drift = 0.0001
G = np.matrix([[0.5*dt**2],
[0.5*dt**2],
[dt],
[1.0]])
Q = G*G.T*sigma_acc_drift**2
print(Q, Q.shape)
In [17]:
I = np.eye(4)
print(I, I.shape)
In [18]:
u = meas_acc
print(u, u.shape)
In [21]:
# Re init state
# State
x[0] = 300.0
x[1] = 5.0
x[2] = 0.0
x[3] = 0.0
# Estimate covariance
P[0,0] = 100.0
P[1,1] = 100.0
P[2,2] = 100.0
P[3,3] = 100.0
# Preallocation for Plotting
# estimate
zt = []
ht = []
dzt= []
zetat=[]
# covariance
Pz = []
Ph = []
Pdz= []
Pzeta=[]
# kalman gain
Kz = []
Kh = []
Kdz= []
Kzeta=[]
for filterstep in range(m):
# ========================
# Time Update (Prediction)
# ========================
# Project the state ahead
x = A*x + B*u[filterstep]
# Project the error covariance ahead
P = A*P*A.T + Q
# ===============================
# Measurement Update (Correction)
# ===============================
# Sonar (only at the beginning, ex take off)
if filterstep%25 == 0 and (filterstep <2000 or filterstep>9000):
# Compute the Kalman Gain
S_sonar = H_sonar*P*H_sonar.T + R_sonar
K_sonar = (P*H_sonar.T) * np.linalg.pinv(S_sonar)
# Update the estimate via z
Z_sonar = meas_sonar[filterstep//25]
y_sonar = Z_sonar - (H_sonar*x) # Innovation or Residual
x = x + (K_sonar*y_sonar)
# Update the error covariance
P = (I - (K_sonar*H_sonar))*P
# Baro
if filterstep%25 == 0:
# Compute the Kalman Gain
S_baro = H_baro*P*H_baro.T + R_baro
K_baro = (P*H_baro.T) * np.linalg.pinv(S_baro)
# Update the estimate via z
Z_baro = meas_baro[filterstep//25]
y_baro = Z_baro - (H_baro*x) # Innovation or Residual
x = x + (K_baro*y_baro)
# Update the error covariance
P = (I - (K_baro*H_baro))*P
# GPS
if filterstep%250 == 0:
# Compute the Kalman Gain
S_gps = H_gps*P*H_gps.T + R_gps
K_gps = (P*H_gps.T) * np.linalg.pinv(S_gps)
# Update the estimate via z
Z_gps = meas_gps[filterstep//250]
y_gps = Z_gps - (H_gps*x) # Innovation or Residual
x = x + (K_gps*y_gps)
# Update the error covariance
P = (I - (K_gps*H_gps))*P
# GPSvel
if filterstep%250 == 0:
# Compute the Kalman Gain
S_gpsvel = H_gpsvel*P*H_gpsvel.T + R_gpsvel
K_gpsvel = (P*H_gpsvel.T) * np.linalg.pinv(S_gpsvel)
# Update the estimate via z
Z_gpsvel = meas_gpsvel[filterstep//250]
y_gpsvel = Z_gpsvel - (H_gpsvel*x) # Innovation or Residual
x = x + (K_gpsvel*y_gpsvel)
# Update the error covariance
P = (I - (K_gpsvel*H_gpsvel))*P
# ========================
# Save states for Plotting
# ========================
zt.append(float(x[0]))
ht.append(float(x[1]))
dzt.append(float(x[2]))
zetat.append(float(x[3]))
Pz.append(float(P[0,0]))
Ph.append(float(P[1,1]))
Pdz.append(float(P[2,2]))
Pzeta.append(float(P[3,3]))
# Kz.append(float(K[0,0]))
# Kdz.append(float(K[1,0]))
# Kzeta.append(float(K[2,0]))
In [22]:
plt.figure(figsize=(17,15))
plt.subplot(321)
plt.plot(t, zt, color='b')
plt.fill_between(t, np.array(zt) - 10* np.array(Pz), np.array(zt) + 10*np.array(Pz), alpha=0.2, color='b')
plt.plot(t, alt_true, 'g')
plt.plot(t_meas_baro, meas_baro, '.r')
plt.plot(t_meas_gps, meas_gps, 'ok')
plt.plot([t[2000], t[2000]], [-1000, 1000], '--k')
plt.plot([t[9000], t[9000]], [-1000, 1000], '--k')
#plt.ylim([1.7, 2.3])
plt.ylim([405 - 50 * amplitude, 405 + 30 * amplitude])
plt.legend(['estimate', 'true altitude', 'baro reading', 'gps reading', 'sonar switched off/on'], loc='lower right')
plt.title('Altitude')
plt.subplot(322)
plt.plot(t, ht, color='b')
plt.fill_between(t, np.array(ht) - 10* np.array(Ph), np.array(ht) + 10*np.array(Ph), alpha=0.2, color='b')
plt.plot(t, height_true, 'g')
plt.plot(t_meas_sonar, meas_sonar, '.r')
plt.plot([t[2000], t[2000]], [-1000, 1000], '--k')
plt.plot([t[9000], t[9000]], [-1000, 1000], '--k')
#plt.ylim([1.7, 2.3])
# plt.ylim([5 - 1.5 * amplitude, 5 + 1.5 * amplitude])
plt.ylim([5 - 10 * amplitude, 5 + 10 * amplitude])
plt.legend(['estimate', 'true height above ground', 'sonar reading', 'sonar switched off/on'])
plt.title('Height')
plt.subplot(323)
plt.plot(t, dzt, color='b')
plt.fill_between(t, np.array(dzt) - 10* np.array(Pdz), np.array(dzt) + 10*np.array(Pdz), alpha=0.2, color='b')
plt.plot(t, vel_true, 'g')
plt.plot(t_meas_gps, meas_gpsvel, 'ok')
plt.plot([t[2000], t[2000]], [-1000, 1000], '--k')
plt.plot([t[9000], t[9000]], [-1000, 1000], '--k')
#plt.ylim([1.7, 2.3])
plt.ylim([0 - 10.0 * amplitude, + 10.0 * amplitude])
plt.legend(['estimate', 'true velocity', 'gps_vel reading', 'sonar switched off/on'])
plt.title('Velocity')
plt.subplot(324)
plt.plot(t, zetat, color='b')
plt.fill_between(t, np.array(zetat) - 10* np.array(Pzeta), np.array(zetat) + 10*np.array(Pzeta), alpha=0.2, color='b')
plt.plot(t, -acc_bias * np.ones_like(t), 'g')
plt.plot([t[2000], t[2000]], [-1000, 1000], '--k')
plt.plot([t[9000], t[9000]], [-1000, 1000], '--k')
plt.ylim([-2.0, 1.0])
# plt.ylim([0 - 2.0 * amplitude, + 2.0 * amplitude])
plt.legend(['estimate', 'true bias', 'sonar switched off/on'])
plt.title('Acc bias')
plt.subplot(325)
plt.plot(t, Pz)
plt.plot(t, Ph)
plt.plot(t, Pdz)
plt.ylim([0, 1.0])
plt.plot([t[2000], t[2000]], [-1000, 1000], '--k')
plt.plot([t[9000], t[9000]], [-1000, 1000], '--k')
plt.legend(['Altitude', 'Height', 'Velocity', 'sonar switched off/on'])
plt.title('Incertitudes')
Out[22]:
In [ ]: