In [ ]:
    
# carga de los datos
wine <- read.csv("data/whitewines.csv")
str(wine)
    
In [ ]:
    
hist(wine$quality)
    
In [ ]:
    
wine_train <- wine[1:3750, ]
wine_test <- wine[3751:4898, ]
    
In [1]:
    
install.packages("rpart")
library(rpart)
    
    
In [ ]:
    
m.rpart <- rpart(quality ~ ., data = wine_train)
m.rpart
    
In [ ]:
    
summary(m.rpart)
    
In [ ]:
    
install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(m.rpart, digits = 3)
    
In [ ]:
    
rpart.plot(m.rpart, 
           digits = 4, 
           fallen.leaves = TRUE,
           type = 3, 
           extra = 101)
    
In [ ]:
    
p.rpart <- predict(m.rpart, wine_test)
summary(p.rpart)
    
In [ ]:
    
summary(wine_test$quality)
    
In [ ]:
    
MAE <- function(actual, predicted) {
    mean(abs(actual - predicted))
}
    
In [ ]:
    
MAE(p.rpart, wine_test$quality)
    
In [ ]:
    
mean(wine_train$quality)
    
In [ ]:
    
MAE(5.87, wine_test$quality)
    
In [ ]:
    
    
In [ ]:
    
library(RWeka)
m.m5p <- M5P(quality ~ ., data = wine_train)
m.m5p
    
In [ ]:
    
summary(m.m5p)
    
In [ ]:
    
ins_model2 <- lm(expenses ~ age + age2 + children + bmi + sex + bmi30*smoker + region, 
                 data = insurance)
summary(ins_model2)
    
In [ ]:
    
    
In [ ]: