In [3]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
In [4]:
from IPython.html.widgets import interact, interactive, fixed
from IPython.display import display
Write a plot_sin1(a, b) function that plots $sin(ax+b)$ over the interval $[0,4\pi]$.
$3\pi$.
In [12]:
def plot_sine1(a, b):
x = np.arange(0, 4.01 * np.pi, 0.01 * np.pi)
plt.plot(x, np.sin(a * x + b))
plt.xlim(0, 4 * np.pi)
plt.xticks([0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi], ['0', '$\pi$', '$2\pi$', '$3\pi$', '$4\pi$'])
In [13]:
plot_sine1(5, 3.4)
Then use interact to create a user interface for exploring your function:
a should be a floating point slider over the interval $[0.0,5.0]$ with steps of $0.1$.b should be a floating point slider over the interval $[-5.0,5.0]$ with steps of $0.1$.
In [14]:
interact(plot_sine1, a = (0.0, 5.0, 0.1), b = (-5.0, 5.0, 0.1))
Out[14]:
In [15]:
assert True # leave this for grading the plot_sine1 exercise
In matplotlib, the line style and color can be set with a third argument to plot. Examples of this argument:
r--bok.Write a plot_sine2(a, b, style) function that has a third style argument that allows you to set the line style of the plot. The style should default to a blue line.
In [16]:
def plot_sine2(a, b, style):
x = np.arange(0, 4.01 * np.pi, 0.01 * np.pi)
plt.plot(x, np.sin(a * x + b), style)
plt.xlim(0, 4 * np.pi)
plt.xticks([0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi], ['0', '$\pi$', '$2\pi$', '$3\pi$', '$4\pi$'])
In [17]:
plot_sine2(4.0, -1.0, 'r--')
Use interact to create a UI for plot_sine2.
a and b as above.
In [21]:
interact(plot_sine2, a = (0.0, 5.0, 0.1), b = (-5.0, 5.0, 0.1), style = ('b.', 'ko', 'r^'))
Out[21]:
In [ ]:
assert True # leave this for grading the plot_sine2 exercise