In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from random import randint
In [2]:
from IPython.html.widgets import interact, interactive, fixed
from IPython.display import display
Write a function named random_line
that creates x
and y
data for a line with y direction random noise that has a normal distribution $N(0,\sigma^2)$:
Be careful about the sigma=0.0
case.
In [10]:
def random_line(m, b, sigma, size=10):
"""Create a line y = m*x + b + N(0,sigma**2) between x=[-1.0,1.0]
Parameters
----------
m : float
The slope of the line.
b : float
The y-intercept of the line.
sigma : float
The standard deviation of the y direction normal distribution noise.
size : int
The number of points to create for the line.
Returns
-------
x : array of floats
The array of x values for the line with `size` points.
y : array of floats
The array of y values for the lines with `size` points.
"""
x = np.linspace(-1.0, 1.0, size)
if sigma > 0:
N = np.random.normal(0, sigma, size)
else:
N = 0
y = m*x + b + N
return(x, y)
In [11]:
m = 0.0; b = 1.0; sigma=0.0; size=3
x, y = random_line(m, b, sigma, size)
assert len(x)==len(y)==size
assert list(x)==[-1.0,0.0,1.0]
assert list(y)==[1.0,1.0,1.0]
sigma = 1.0
m = 0.0; b = 0.0
size = 500
x, y = random_line(m, b, sigma, size)
assert np.allclose(np.mean(y-m*x-b), 0.0, rtol=0.1, atol=0.1)
assert np.allclose(np.std(y-m*x-b), sigma, rtol=0.1, atol=0.1)
Write a function named plot_random_line
that takes the same arguments as random_line
and creates a random line using random_line
and then plots the x
and y
points using Matplotlib's scatter
function:
color
keyword argument with a default of red
.
In [12]:
def ticks_out(ax):
"""Move the ticks to the outside of the box."""
ax.get_xaxis().set_tick_params(direction='out', width=1, which='both')
ax.get_yaxis().set_tick_params(direction='out', width=1, which='both')
In [37]:
def plot_random_line(m, b, sigma, size=10, color='red'):
"""Plot a random line with slope m, intercept b and size points."""
plt.xlim(-1.1,1.1)
plt.ylim(-10.0, 10.0)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("y = mx + b + N (0, $\sigma$ ** 2)", fontsize=16)
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
x, y = random_line(m,b,sigma,size=10)
plt.scatter(x,y,color=color)
In [38]:
plot_random_line(5.0, -1.0, 2.0, 50)
In [ ]:
assert True # use this cell to grade the plot_random_line function
Use interact
to explore the plot_random_line
function using:
m
: a float valued slider from -10.0
to 10.0
with steps of 0.1
.b
: a float valued slider from -5.0
to 5.0
with steps of 0.1
.sigma
: a float valued slider from 0.0
to 5.0
with steps of 0.01
.size
: an int valued slider from 10
to 100
with steps of 10
.color
: a dropdown with options for red
, green
and blue
.
In [41]:
interact(plot_random_line, m=(-10.0,10.0,0.1), b=(-5.0,5.0,0.1), sigma=(0.0,5.0,0.01), size=(10,100,10), color={"red":'red', "green": 'green', "blue":'blue'});
In [40]:
#### assert True # use this cell to grade the plot_random_line interact
Used "http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html" for the numpy.random.normal function
In [ ]: