# Interact Exercise 2

## Imports



In [3]:

%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np




In [4]:

from IPython.html.widgets import interact, interactive, fixed
from IPython.display import display




:0: FutureWarning: IPython widgets are experimental and may change in the future.



## Plotting with parameters

Write a plot_sin1(a, b) function that plots $sin(ax+b)$ over the interval $[0,4\pi]$.

• Customize your visualization to make it effective and beautiful.
• Customize the box, grid, spines and ticks to match the requirements of this data.
• Use enough points along the x-axis to get a smooth plot.
• For the x-axis tick locations use integer multiples of $\pi$.
• For the x-axis tick labels use multiples of pi using LaTeX: $3\pi$.


In [5]:

def plot_sine1(a,b):
plt.figure(figsize=(15,2))
x = np.linspace(0,4 * np.pi,200)
plt.plot(x,np.sin((a*x)+b))
plt.title('Sine Plot')
plt.xticks([0,np.pi,2*np.pi,3*np.pi,4*np.pi],['0','$\pi$','$2\pi$','$3\pi$','$4\pi$'])
plt.grid(True)
plt.box(False)
plt.xlabel('Interval of pi')
plt.ylabel('Sin(ax + b)')
plt.xlim(0,4*np.pi);




In [6]:

plot_sine1(5,3.4)






Then use interact to create a user interface for exploring your function:

• a should be a floating point slider over the interval $[0.0,5.0]$ with steps of $0.1$.
• b should be a floating point slider over the interval $[-5.0,5.0]$ with steps of $0.1$.


In [7]:

interact(plot_sine1 , a = (0.0,5.0,0.1) , b = (-5.0,5.5,0.1));







In [22]:

assert True # leave this for grading the plot_sine1 exercise



In matplotlib, the line style and color can be set with a third argument to plot. Examples of this argument:

• dashed red: r--
• blue circles: bo
• dotted black: k.

Write a plot_sine2(a, b, style) function that has a third style argument that allows you to set the line style of the plot. The style should default to a blue line.



In [32]:

def plot_sine2(a,b,style='b'):
plt.figure(figsize=(15,2))
x = np.linspace(0,4 * np.pi,200)
plt.plot(x,np.sin((a*x)+b),style)
plt.title('Sine Plot')
plt.xticks([0,np.pi,2*np.pi,3*np.pi,4*np.pi],['0','$\pi$','$2\pi$','$3\pi$','$4\pi$'])
plt.grid(True)
plt.box(False)
plt.xlabel('Interval of pi')
plt.ylabel('Sin(ax + b)')
plt.xlim(0,4*np.pi);




In [35]:

plot_sine2(4.0, -1.0,'r.')






Use interact to create a UI for plot_sine2.

• Use a slider for a and b as above.
• Use a drop down menu for selecting the line style between a dotted blue line line, black circles and red triangles.


In [30]:

interact(plot_sine2 , a = (0.0,5.0,0.1) , b = (-5.0,5.0,0.1) , style = {'Blue dotted': 'b.' , 'Black circles': 'ko' , 'Red triangles': 'r^'});







In [31]:

assert True # leave this for grading the plot_sine2 exercise