Use the expressions from your notes fo $L$ and $C$ to derive the expressions for the characteristic impedance $Z_0$ and the phase constant $\beta$ for a length of coax and thus show that $V_p = \frac{c}{\sqrt{\epsilon'}}$.
The above is the analytical formula for $Z_0$ for a coaxial transmission line. Now, \begin{eqnarray*} \eta &=& \sqrt{\frac{\mu}{\epsilon'\epsilon_0}} \Rightarrow \\ \Rightarrow Z_0 &=& \frac{\eta}{2\pi}\ln\frac{b}{a} \, \Omega \end{eqnarray*}
In lossless coaxial transmission line $\beta = \omega\sqrt{LC}$, so: \begin{eqnarray*} \beta^2 &=& \omega^2\frac{\mu}{2\pi}\ln\frac{b}{a}\times\frac{2\pi\epsilon'}{\ln\frac{b}{a}} \Rightarrow \\ \Rightarrow \beta^2 &=& \omega^2\mu\epsilon' \Rightarrow \\ \Rightarrow \beta &=& \omega\sqrt{\mu\epsilon'} \end{eqnarray*}
As a check we know that $V_p = \frac{\omega}{\beta}$ so then: \begin{eqnarray*} V_p &=& \frac{\omega}{\omega\sqrt{\mu\epsilon'}} \Rightarrow \\ \Rightarrow V_p &=& \frac{1}{\sqrt{\mu\epsilon'}} \end{eqnarray*} However, $c = \frac{1}{\sqrt{\mu_0\epsilon_0}}$, so $V_p = \frac{c}{\sqrt{\epsilon'}}$.
Calculate the phase constant and overall loss ($Np/m$ and $dB/m$) for a $1m$ length of coaxial cable at $10GHz$ if $R_s = 2.5$, the inner conductor radius is $1mm$, the outer is $2.5mm$, and the dielectric constant is $\epsilon_r = \epsilon_r' - j\epsilon_r'' = 2.5 - j0.0025$.
These four values can be used to describe the coaxial cable. They are also used to calculate the phase constant $\beta$, the characteristic impedance $Z_0$, and the losses per unit length.
In [35]:
import math
# constants, values from wikipedia
mu_0 = 4 * math.pi * 1e-7
epsilon_0 = 8.85e-12
Rs = 2.5
length = 1 # will use base units
a = 1e-3 # inner radius in metres
b = 2.5e-3 # outer radius in metres
freq = 10e9
omega = 2 * math.pi * freq
e_r = 2.5 - 0.0025j
R = (Rs / (2 * math.pi)) * (1/a + 1/b)
L = (mu_0 / (2 * math.pi)) * math.log(b/a)
C = (2 * math.pi * e_r.real * epsilon_0) / math.log(b/a)
G = (2 * math.pi * abs(e_r.imag) * epsilon_0 * omega) / math.log(b/a)
print("The calculated values are:")
print("R = {:.3f} Ohms/m".format(R))
print("L = {:.3e} H/m".format(L))
print("C = {:.3e} F/m".format(C))
print("G = {:.3e} S/m".format(G))
Now we can find the following values: \begin{eqnarray*} \beta &=& \omega\sqrt{LC} = \frac{\omega\sqrt{\epsilon_r'}}{c} \, rad/m\\ Z_0 &=& \frac{\sqrt{\frac{\mu}{\epsilon'}}\ln\frac{b}{a}}{2\pi} = \frac{377\ln\frac{b}{a}}{2\pi\sqrt{\epsilon_r'}} \, \Omega\\ \alpha &=& \frac{R}{2Z_0} + \frac{GZ_0}{2} \, Np/m \end{eqnarray*}
In [36]:
beta_1 = omega * math.sqrt(L * C)
beta_2 = omega * math.sqrt(e_r.real) / (2.998e8) # c in vacuum
Z_0 = (377 * math.log(b/a)) / (2 * math.pi * math.sqrt(e_r.real))
alpha = R / (2 * Z_0) + (G * Z_0) / 2
alpha_db = alpha * 8.686 # 1 Np ~ 8.686 dB
print("The calculated values are:")
print("Phase constant = {:.3f} rad/m".format(beta_1))
print("Phase constant, sanity check = {:.3f} rad/m".format(beta_2))
print("Characteristic impedance Z0 = {:.3f} Ohms".format(Z_0))
print("Loss per unit length = {:.3f} Np/m".format(alpha))
print("Loss per unit length = {:.3f} dB/m".format(alpha_db))
Use the expression for effective dielectric constant of a microstrip line and derive the expressions where $w = 10d$, $w = d$, and $w = \frac{d}{4}$. What do you notice?
The above show that $\epsilon_{eff}$ is an average of two dielectric constants plus a term which implies a disproportianate ammount of the field is in the dielectric and as the line width goes up more of the field is in the dielectric than you might expect - further increasing dielectric losses.
Design a microstrip transmission line with a characteristic impedance of $Z_0 = 60\Omega$, where the substrate thickness is $d=1.58mm$, the loss tangent $\tan\delta$ is given in Question 1. b), as is the relative permittivity $\epsilon_r$. The surface resistance of copper at $10 GHz$ is $R_S = 2.5\Omega$. Assume the ratio of $\frac{w}{d}<2$. What is the width of the microstrip line in this case?
We know from Microwave Office excercise that for a $Z_0 = 50 \Omega$ the line width is $~2.4mm$. Therefore, if $Z_0 = 60\Omega$ is higher we might expect a somewhat narrower line that is perhaps $~1.5-2mm$. Then, if $d = 1.588mm$, the ratio $\frac{w}{d}$ will be $~1-1.2$, so the assumption for $<2$ is probably correct.
From Pozar:
\begin{eqnarray*}
\frac{w}{d} &=& \frac{8{e}^A}{{e}^{2A}-2} \\
A &=& \frac{Z_0}{60}\sqrt{\frac{\epsilon_r+1}{2}}+\frac{\epsilon_r-1}{\epsilon_r+1}(0.23+\frac{0.11}{\epsilon_r})
\end{eqnarray*}
In [37]:
Z_0_ustrip = 60
d = 1.588 # value in mm
A = (Z_0_ustrip/60) * math.sqrt((e_r.real+1)/2) + \
((e_r.real-1)/(e_r.real+1)) * (0.23+0.11/e_r.real)
ratio = (8 * math.e**A) / (math.e**(2*A) - 2)
w = d * ratio
print("The width of the transmission line is {:.3f} mm".format(w))
Calculate the guide wavelength at $10 GHz$ and calculate the total loss per cm at $10 GHz$.
Recall that \begin{eqnarray*} \lambda_g &=& \frac{\lambda_0}{\sqrt{\epsilon_{eff}}} \\ \lambda_0 &=& \frac{c}{f} \\ \epsilon_{eff} &=& \frac{\epsilon_r+1}{2}+\frac{\epsilon_r-1}{2}\frac{1}{\sqrt{1+\frac{12d}{w}}} \end{eqnarray*}
In [38]:
e_r_eff = (e_r.real+1)/2 + ((e_r.real-1)/2) * (1 / math.sqrt(1 + 12*d/w))
lambda_0 = 2.998e8 / freq
lambda_g = lambda_0 / math.sqrt(e_r_eff)
print("The effective dielectric constant is {:.3f}".format(e_r_eff))
print("The wavelength in free space is {:.3f} mm".format(lambda_0*1e3))
print("The guide wavelength is {:.3f} mm".format(lambda_g*1e3))
Now, to find the total loss per cm at $10 GHz$ we can use the following formulas: \begin{eqnarray*} \alpha_t &=& \alpha_c + \alpha_d \, Np/m \\ \alpha_c &=& \frac{R_s}{Z_0w} \, Np/m \\ \alpha_d &=& \frac{k_0\epsilon_r(\epsilon_{eff}-1)\tan\delta}{2\sqrt{\epsilon_{eff}}(\epsilon_r-1)} \, Np/m \\ k_0 &=& \frac{2\pi}{\lambda_0} \end{eqnarray*}
In [39]:
k_0 = 2 * math.pi / lambda_0
tan_delta = abs(e_r.imag/e_r.real)
alpha_c = Rs / (Z_0_ustrip * w)
alpha_d = (k_0 * e_r.real * tan_delta * (e_r_eff - 1)) \
/ (2 * math.sqrt(e_r_eff) * (e_r.real - 1))
alpha_total = alpha_c + alpha_d
alpha_total_db = alpha_total * 8.686
alpha_total_cm = alpha_total / 100
alpha_total_db_cm = alpha_total_db / 100
print("Conductor losses are {:.5f} Np/m".format(alpha_c))
print("Dielectric losses are {:.5f} Np/m".format(alpha_d))
print("Total losses are {:.5f} Np/m or {:.5f} Np/cm".format(alpha_total, alpha_total_cm))
print("In dB, {:.5f} dB/m or {:.5f} dB/cm".format(alpha_total_db, alpha_total_db_cm))