Welcome to pyLIMA tutorial!

This second example will give you some basics about parameters change.

If you do not like the pyLIMA standard parameters, this is made for you.

We gonna fit the same lightcurves but using different parametrization.


In [ ]:
### First import the required libraries
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import os, sys

from pyLIMA import event
from pyLIMA import telescopes
from pyLIMA import microlmodels

### Create an event object. You can choose the name and RA,DEC in degrees :

your_event = event.Event()
your_event.name = 'your choice'
your_event.ra = 269.39166666666665 
your_event.dec = -29.22083333333333

### Now we need some observations. That's good, we obtain some data on two
### telescopes. Both are in I band and magnitude units :

data_1 = np.loadtxt('./Survey_1.dat')
telescope_1 = telescopes.Telescope(name='OGLE', camera_filter='I', light_curve_magnitude=data_1)

data_2 = np.loadtxt('./Followup_1.dat')
telescope_2 = telescopes.Telescope(name='LCOGT', camera_filter='I', light_curve_magnitude=data_2)

### Add the telescopes to your event :
your_event.telescopes.append(telescope_1)
your_event.telescopes.append(telescope_2)

### Find the survey telescope :
your_event.find_survey('OGLE')

### Sanity check
your_event.check_event()


### set gamma for each telescopes :

your_event.telescopes[0].gamma = 0.5
your_event.telescopes[1].gamma = 0.5


### Let's go basic for FSPL :
model_1 = microlmodels.create_model('FSPL', your_event)

### Let's cheat and use the results from example_1 :

model_1.parameters_guess = [79.9, 0.008, 10.1, 0.023]

your_event.fit(model_1,'LM')

### Plot the results

your_event.fits[-1].produce_outputs()
print ('Chi2_LM :',your_event.fits[-1].outputs.fit_parameters.chichi)
print ('Fit parameters : ', your_event.fits[-1].fit_results)
plt.show()

All right, look OK. But let's say you dislike the rho parameter. Let's assume you prefer fitting using log(rho). Let's see.


In [ ]:
### We need to tell pyLIMA what kind of change we want :

model_1.fancy_to_pyLIMA_dictionnary = {'logrho': 'rho'} 

# This means we change rho by log(rho) in the fitting process.
import pickle
def logrho(x): return np.log10(x.rho)
def rho(x): return 10**x.logrho

model_1.pyLIMA_to_fancy = {'logrho':pickle.loads(pickle.dumps(logrho))}

### We also need to explain the inverse mathematical transformation :

model_1.fancy_to_pyLIMA = {'rho': pickle.loads(pickle.dumps(rho))}

### Change rho boundaries to logrho boundaries (i.e [log10(rhomin), log10(rhomax)]) :
model_1.parameters_boundaries[3] = [-5, -1]

### Give some guess for LM
model_1.parameters_guess = [79.9309216918228, 0.008144421578161223, 10.110761974783646, np.log10(0.02259887495966877)]

### That's it, let's fit!
your_event.fit(model_1,'LM')

your_event.fits[-1].produce_outputs()
print ('Chi2_LM :',your_event.fits[-1].outputs.fit_parameters.chichi)
print ('Log rho : ',your_event.fits[-1].outputs.fit_parameters.logrho)
print ('Corresponding rho : ',10**your_event.fits[-1].outputs.fit_parameters.logrho)

plt.show()

It works great!

OK, you want something more complicated now : tstar = rho.tE, logrho = log(rho).


In [ ]:
### We need to tell pyLIMA what kind of change we want :

model_1.fancy_to_pyLIMA_dictionnary = {'logrho': 'rho', 'tstar':'tE'} 

# This means we change rho by log(rho) and tE by tstar in the fitting process.

### We need now to explain the mathematical transformation :
def logrho(x): return np.log10(x.rho)
def rho(x): return 10**x.logrho

def tstar(x): return x.rho*x.tE
def tE(x): return x.tstar/10**x.logrho

model_1.pyLIMA_to_fancy = {'logrho':pickle.loads(pickle.dumps(logrho)),'tstar':pickle.loads(pickle.dumps(tstar))}

### We also need to explain the inverse mathematical transformation :

model_1.fancy_to_pyLIMA = {'rho': pickle.loads(pickle.dumps(rho)),'tE': pickle.loads(pickle.dumps(tE))}

### Change tE boundaries to tstar boundaries (i.e [log10(rhomin)*tEmin, log10(rhomax)*tEmax]) :
model_1.parameters_boundaries[2] = [10**-5, 300 ]

### Change rho boundaries to logrho boundaries (i.e [log10(rhomin), log10(rhomax)]) :
model_1.parameters_boundaries[3] = [-5, -1]

### Give some guess for LM
model_1.parameters_guess = [79.93092292215124, 0.008144793661913143, 0.22, -1.6459136264565297]

### That's it, let's fit!
your_event.fit(model_1,'LM')

your_event.fits[-1].produce_outputs()
print('Chi2_LM :',your_event.fits[-1].outputs.fit_parameters.chichi)
print('tstar : ',your_event.fits[-1].outputs.fit_parameters.tstar)
print('Corresponding tE: ',your_event.fits[-1].outputs.fit_parameters.tstar/10**your_event.fits[-1].outputs.fit_parameters.logrho)

print('Log rho : ',your_event.fits[-1].outputs.fit_parameters.logrho)
print('Corresponding rho : ',10**your_event.fits[-1].outputs.fit_parameters.logrho)

plt.show()

In [ ]:
### And what about the DE method?  

### Let's try it!:
your_event.fit(model_1,'DE')


your_event.fits[-1].produce_outputs()

print('Chi2_DE :',your_event.fits[-1].outputs.fit_parameters.chichi)

print('tstar : ',your_event.fits[-1].outputs.fit_parameters.tstar)

print('Corresponding tE: ',your_event.fits[-1].outputs.fit_parameters.tstar/10**your_event.fits[-1].outputs.fit_parameters.logrho)



print('Log rho : ',your_event.fits[-1].outputs.fit_parameters.logrho)

print('Corresponding rho : ',10**your_event.fits[-1].outputs.fit_parameters.logrho)


plt.show()

Bonus Track

What about some MCMC?


In [ ]:
### Let's win some times by injecting some previous results

model_1.parameters_guess = [79.9, 0.008, 0.22849, -1.6459]

### Fit again, but using MCMC now. TAKE A WHILE....Wait until figures pop up.
your_event.fit(model_1,'MCMC',flux_estimation_MCMC='MCMC')
print('The fitting process is finished now, let produce some outputs....')

your_event.fits[-1].produce_outputs()

plt.show()