In [ ]:
import run_run as rr
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
In [ ]:
def plot_data(data):
fig, axes = plt.subplots(nrows = 4, ncols = 2, figsize=(12,8.5))
axes = axes.flatten()
plt.subplots_adjust(left=.15, bottom=.06, right=.95, top=.97,
wspace=.17, hspace=.30)
curr = axes[0]
curr.set_ylabel('length')
curr.set_title('L (V)')
curr.plot(data['length'])
curr = axes[1]
curr.set_ylabel('F (V)')
curr.set_title('Force')
curr.plot(data['force'])
curr = axes[2]
curr.set_ylabel('Stim (V)')
curr.set_title('Stimulation')
curr.plot(data['stimulation'])
curr = axes[3]
curr.set_ylabel('Beam (BPM diode)')
curr.set_title('Beam')
curr.plot(data['beam'])
curr = axes[4]
curr.set_ylabel('Exposure trigger (V)')
curr.set_title('Pilatus')
curr.plot(data['exposure'])
curr = axes[5]
curr.set_title('PSD1')
curr.plot(data['psd1'])
curr = axes[6]
curr.set_title('PSD2')
curr.plot(data['psd2'])
curr = axes[7]
curr.set_title('PSD diff over sum')
diff_over_sum = lambda p1, p2: np.subtract(p1, p2)/np.add(p1,p2)
curr.plot(diff_over_sum(data['psd1'], data['psd2']))
plt.tight_layout()
plt.show()
def grab_and_plot():
data = rr.grab()
plot_data(data)
return data
In [ ]:
%pdb
In [ ]:
run_deets = {
"fiber_number":0,
"mount_length":2.14,
"exposure_delay":10,
"fiber_offset":0.0,
"exposure_length": 100,
"species": 'moth',
"trial_number":0,
"notes": ""
}
data = rr.grab(run_deets)
In [ ]:
plot_data(data)
In [ ]:
data = grab_and_plot()
In [ ]:
import run_run
In [ ]:
run_deets = {
"fiber_number":0,
"mount_length":2.14,
"exposure_delay":10,
"fiber_offset":0.0,
"exposure_length": 100,
"species": 'moth',
"trial_number":0,
"notes": ""
}
trial_number = 0
def increase_trial_and_run(notes=''):
run_deets["trial_number"] = run_deets["trial_number"] + 1
run_deets["notes"] = notes
data = run_run.grab(input_dict)
In [ ]:
pwd
In [ ]:
ls 'C:\\Users\Dave\code'