In [3]:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("data/MNIST",one_hot=True)
There is an excellent explanation of the softmax regression here, however we are essentially building the following:
Which in matrix form looks like:
Credit the images from the Tensorflow docs
In [4]:
import tensorflow as tf
# Setup our Input placeholder
x = tf.placeholder(tf.float32, [None, 784])
# Our Weights and Biases
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x,W) + b
# Define loss and optimizer
y_ = tf.placeholder(tf.float32,[None,10])
# The following is considered numerically unstable, using the line above instead
# cross_entropy = tf.reduce_mean(-(tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1])))
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
In [5]:
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# We train our model with batches of random data
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
In [6]:
# We validate our model by casting our boolean (right/wrong) into integers and taking the mean
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_:mnist.test.labels}))