Tensorflow MNIST 
Part 1 Softmax Regression
In [2]:
    
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
In [3]:
    
import matplotlib.pyplot as plt
import numpy as np
    
In [4]:
    
def display_digit(x,y):
    '''
    Visualize x,y image/label set'''
    label = y.argmax(axis=0)
    image = x.reshape([28,28])
    plt.title('Label: %d' % (label))
    plt.imshow(image, cmap=plt.get_cmap('gray_r'))
    plt.show()
    
In [5]:
    
#Visualize 1st 5 Training Examples
for i in range (5):
    display_digit(mnist.train.images[i],mnist.train.labels[i])
    
    
    
    
    
    
In [6]:
    
#Import Tf and start a session
import tensorflow as tf
sess = tf.InteractiveSession()
    
In [7]:
    
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
    
In [8]:
    
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
    
In [9]:
    
sess.run(tf.global_variables_initializer())
    
In [10]:
    
y = tf.matmul(x,W) + b
    
In [11]:
    
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
    
In [12]:
    
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
In [13]:
    
for _ in range(1000):
  batch = mnist.train.next_batch(100)
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})
    
In [14]:
    
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Test Set Accuracy :",accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    
    
In [20]:
    
feed_dict = {x: [mnist.test.images[2]]}
classification = sess.run(y, feed_dict)
print (classification)
    
    
In [21]:
    
display_digit(mnist.test.images[2],mnist.test.labels[2])
    
    
Part 2 : CNN
In [ ]:
    
    
In [87]:
    
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)
    
In [88]:
    
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')
    
In [89]:
    
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
    
In [92]:
    
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
    
In [93]:
    
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
    
In [94]:
    
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
In [95]:
    
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
In [96]:
    
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    
In [97]:
    
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i % 100 == 0:
      train_accuracy = accuracy.eval(feed_dict={
          x: batch[0], y_: batch[1], keep_prob: 1.0})
      print('step %d, training accuracy %g' % (i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
  print('test accuracy %g' % accuracy.eval(feed_dict={
      x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    
    
In [ ]: