In [1]:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
In [9]:
mnist
Out[9]:
In [10]:
mnist.train
Out[10]:
In [11]:
mnist.train.images
Out[11]:
In [12]:
mnist.train.images.shape
Out[12]:
In [15]:
mnist.test.images.shape
Out[15]:
In [21]:
mnist.train.labels
Out[21]:
In [22]:
mnist.train.labels[1:15]
Out[22]:
In [41]:
import tensorflow as tf
In [30]:
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
In [32]:
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
In [40]:
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
In [37]:
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
In [38]:
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
In [ ]: