donde $\rho_p,\: \rho_m$ son las densidades de energía para la ecuación de estado del phantom y la materia, respectivamente; $\lambda$ esta relaciondado con la tensión de la brana.
$$1=\frac{8\pi G}{3H^{2}}\sum_{i}\left(\rho_{i}+\bar{\rho}_{i}\right),$$ y con la constricción de Friedmann de la forma $$1=\sum\left(x_{i}^{2}+y_{i}^{2}\right),$$ se definen $$x_{i}^{2}=\frac{8\pi G}{3H^{2}}\rho_{i},\\y_{i}^{2}=\frac{8\pi G}{3H^{2}}\bar{\rho}_{i}.$$ Estas dos ecuciones se derivan con respecto a los e-folding, es decir, respecto al tiempo conforme $N$; y después se integran con respecto a N, se obtiene
$$x_{i}=x_{i0}\dfrac{e^{-\frac{3}{2}\left(1+w_{i}\right)N}}{H}\\ y_{i}=y_{i0}\dfrac{e^{-\frac{3}{2}\left(1+\bar{w}_{i}\right)N}}{H}.$$
Se hace los mismo para la ecuación de Friedmann $$\left(H^{2}\right)^{\prime}=\frac{8\pi G}{3}\sum\left(\rho_{i}^{\prime}+\bar{\rho}_{i}^{\prime}\right),$$ Finalmente se obtiene la ecuación para $H$ $$H=\sqrt{\sum\left(x_{i0}^{2}e^{-3\left(1+w_{i}\right)N}+y_{i0}^{2}e^{-3\left(1+\bar{w}_{i}\right)N}+C\right)}.$$
$$x_1=x_M=x_{0M}\dfrac{e^{-\frac{3}{2}N}}{H}\\ x_2=x_p=x_{0p}\dfrac{e^{\frac{3}{4}N}}{H}$$
$$y_{1}=y_{\bar{M}}=y_{\bar{M}0}\dfrac{e^{-3N}}{H}\\ y_{2}=y_{\bar{p}}=y_{\bar{p}0}\dfrac{e^{\frac{3}{2}N}}{H}$$
$$x_1^2=x_M^2=\Omega_m=x_{M0}^2\dfrac{e^{-3N}}{H^2}=\Omega_{0M}\dfrac{e^{-3N}}{H^2}\\ x_2^2=x_p^2=\Omega_p=x_{0p}^2\dfrac{e^{\frac{3}{2}N}}{H^2}=\Omega_{0p}\dfrac{e^{\frac{3}{2}N}}{H^2}$$ $$y_{1}^2=y_{\bar{M}}^2=\bar{\Omega}_{M}=y_{0\bar{M}}^2\dfrac{e^{-6N}}{H^2}=\bar{\Omega}_{0M}\dfrac{e^{-6N}}{H^2}\\ y_{2}^2=y_{\bar{p}}^2=\bar{\Omega}_{p}=y_{0\bar{p}}\dfrac{e^{3N}}{H^2}=\bar{\Omega}_{0p}\dfrac{e^{3N}}{H^2}$$
$$H=\sqrt{x_{0M}^2 e^{-3N}+x_{0p}^2 e^{\frac{3}{2}N}+ y_{0\bar{M}}^2 e^{-6N}+ y_{0\bar{p}}^2 e^{3N} +C}$$
donde $H=H(N)$ entonces $$H(0)=\sqrt{x_{0M}^2+x_{0p}^2+ y_{0\bar{M}}^2 + y_{0\bar{p}}^2 +C}$$ $$H(0)=\sqrt{1 + C}\;\rightarrow\;C=H(0)^2-1$$
In [14]:
function H(N::Float64,x0,z0)
w0=0.315-x0
y0=0.685-z0
H0=1.0
Hache = w0*exp(-3.0*N) + x0*exp(-6.0*N) + y0*exp(3.0*N/2.) + z0*exp(3.0*N)
return Hache
end
Out[14]:
Ahora una función para cada una de mis componentes
In [15]:
function f1(fH,w0,x0,z0,a,b,p)
x=zeros(0)
for N in a:p:b
x_n = (w0-x0)*exp(-3.0*N)
x_nn = x_n/fH(N,x0,z0)
push!(x,x_nn)
# push!(Nt,[i])
end
x
end
Out[15]:
In [16]:
function f2(fH,x0,z0,a,b,p)
x=zeros(0)
for N in a:p:b
x_n = x0*exp(-6.0*N)
x_nn = x_n/H(N,x0,z0)
push!(x,x_nn)
end
x
end
Out[16]:
In [17]:
function f3(fH,y0,x0,z0,a,b,p)
x=zeros(0)
for N in a:p:b
x_n = (y0-z0)*exp(3.0*N/2.0)
x_nn = x_n/fH(N,x0,z0)
push!(x,x_nn)
end
x
end
Out[17]:
In [18]:
function f4(fH,z0,x0,a,b,p)
x=zeros(0)
for N in a:p:b
x_n = z0*exp(3.0*N)
x_nn = x_n/fH(N,x0,z0)
push!(x,x_nn)
end
x
end
Out[18]:
Se gráfican
In [19]:
## using Winston
using PyPlot
## using Gadfly
## using RDatasets
In [20]:
x0 = 0.0;
z0 =0.0;
a = -10.0;
b = 5.0;
p = 0.01;
ws = f1(H,0.315,x0,z0,a,b,p);
xs = f2(H,x0,z0,a,b,p);
ys = f3(H,0.685,x0,z0,a,b,p);
zs = f4(H,z0,x0,a,b,p);
ts = collect(a:p:b);
In [71]:
function graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int,name::ASCIIString)
ws = f1(H,0.315,x₀,z₀,a,b,p);
xs = f2(H,x₀,z₀,a,b,p);
ys = f3(H,0.685,x₀,z₀,a,b,p);
zs = f4(H,z₀,x₀,a,b,p);
ts = collect(a:p:b);
w₀ = abs(0.315-x₀)
y₀ = abs(0.685-z₀)
xlim(xlim1,xlim2)
ylim(ylim1,ylim2)
Ome1 = plot(ts,ws,"--",label=L"$\Omega_m$");
Ome2 = plot(ts,xs,label=L"$\bar{\Omega}_m$");
Ome3 = plot(ts,ys,"--",label=L"$\Omega_p$");
Ome4 = plot(ts,zs,label=L"$\bar{\Omega}_p$");
grid("on");
legend(handles=[Ome1,Ome2,Ome3,Ome4],loc=location);
xlabel(L"$N=log(a)$");
ylabel(L"$\Omega$");
axvline(0,color="gray")
title(L"$\Omega_{0m}=$""$w₀"L"$,\;\bar{\Omega}_{0m}=$""$x₀"L"$,\;\Omega_{0p}=$""$y₀"L"$,\;\bar{\Omega}_{0p}=$""$z₀")
savefig(name)
return show()
end
Out[71]:
In [73]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(0.0,0.0,-5.,2.0,0.01,-5,2,0,1,6,"AD_01.pdf")
In [74]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(1e-4,0.0,-5.0,2.0,0.01,-5,2,0,1,6,"AD_02.pdf")
In [75]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(1e-3,0.0,-5.,2.0,0.01,-5,2,0,1,6,"AD_03.pdf")
In [76]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(1e-2,0.0,-5.,2.0,0.01,-5,2,0,1,6,"AD_04.pdf")
In [77]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(0.0,1e-3,-2.5,6.0,0.01,-2.5,6,0,1,6,"AD_05.pdf")
In [78]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(0.0,1e-2,-2.5,4.0,0.01,-2.5,4,0,1,6,"AD_06.pdf")
In [79]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(0.0,0.05,-2.5,4.0,0.01,-2.5,4,0,1,6,"AD_07.pdf")
In [80]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(1e-3,1e-3,-4.0,6.0,0.01,-4.0,6,0,1,6,"AD_08.pdf")
In [81]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(1e-2,1e-2,-3.0,4.0,0.01,-3,4,0,1,6,"AD_09.pdf")
In [82]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(0.05,0.05,-2.5,4.0,0.01,-2.5,4,0,1,6,"AD_10.pdf")
In [83]:
# graficador(x₀::Float64,z₀::Float64,a::Float64,b::Float64,p::Float64,xlim1,xlim2,ylim1,ylim2,location::Int)
graficador(0.315,0.685,-1.0,1.0,0.01,-1,1,0,1,6,"AD_11.pdf")
In [ ]: