In [ ]:
%%HTML
<style>
.output_png {
display: table-cell;
text-align: center;
vertical-align: middle;
}
body:after {
background-image: url('../04-Small-Worlds/lincs.png');
background-size: 200px 100px;
position: fixed;
bottom: 1em;
right: 8em;
width: 200px;
height: 100px;
content:"";
}
</style>
Spoiler : PageRank interprets a Web Graph as a transition graph
If the recurrent SCC's are ap. ir. $$A^k \underset{k\to \infty}{\longrightarrow} \begin{pmatrix} 0 & F \\ 0 & R^\infty \end{pmatrix}\text{, with } \left\{ \begin{array}{l} R^\infty = \begin{pmatrix} R^\infty_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & R^\infty_d \end{pmatrix} \\ \text{ and }\\ F = (\mathbf{1}-T)^{-1}ER^\infty \end{array} \right. $$
Let $ A $ be stochastic, irreducible, associated to probability $ P $. Let $B = (\alpha A) + (1-\alpha \mathbf{1}) $, for $ \alpha \in ]0,1[ $, $ P_0 $ a probability. Then $$P_0 B^k\underset{k\to \infty}{\longrightarrow} P$$
Interpretation: uniform loops preserve $P$ and suppress periodicity.
Simple workaround for leaves: $P_{n+1} = P_n A / ||P_n A||_1$