Teil c
$$
\xi(0) = \sum_{n=1}^N \vec a_n \alpha_n = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = A\vec\alpha \\
mit\ A = (\vec a_1, \vec a_2, \cdots, \vec a_N)\\
\dot \xi(0) = \sum_{n=1}^N \vec a_n \beta_n \omega_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = B\vec\beta \\
mit\ B = (\omega_1 \vec a_1, \omega_2 \vec a_2, \cdots, \omega_N \vec a_N) \\
\\
\Leftrightarrow \vec \alpha = A^{-1} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}\ und\
\vec \beta = B^{-1} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}
$$