Softmax Classifer 1D

Table of Contents

In this lab, you will use Softmax to classify three linearly separable classes, the features are in one dimension

Estimated Time Needed: 25 min


Preparation

We'll need the following libraries:


In [ ]:
# Import the libraries we need for this lab

import torch.nn as nn
import torch
import matplotlib.pyplot as plt 
import numpy as np
from torch.utils.data import Dataset, DataLoader

Use the helper function to plot labeled data points:


In [ ]:
# Create class for plotting

def plot_data(data_set, model = None, n = 1, color = False):
    X = data_set[:][0]
    Y = data_set[:][1]
    plt.plot(X[Y == 0, 0].numpy(), Y[Y == 0].numpy(), 'bo', label = 'y = 0')
    plt.plot(X[Y == 1, 0].numpy(), 0 * Y[Y == 1].numpy(), 'ro', label = 'y = 1')
    plt.plot(X[Y == 2, 0].numpy(), 0 * Y[Y == 2].numpy(), 'go', label = 'y = 2')
    plt.ylim((-0.1, 3))
    plt.legend()
    if model != None:
        w = list(model.parameters())[0][0].detach()
        b = list(model.parameters())[1][0].detach()
        y_label = ['yhat=0', 'yhat=1', 'yhat=2']
        y_color = ['b', 'r', 'g']
        Y = []
        for w, b, y_l, y_c in zip(model.state_dict()['0.weight'], model.state_dict()['0.bias'], y_label, y_color):
            Y.append((w * X + b).numpy())
            plt.plot(X.numpy(), (w * X + b).numpy(), y_c, label = y_l)
        if color == True:
            x = X.numpy()
            x = x.reshape(-1)
            top = np.ones(x.shape)
            y0 = Y[0].reshape(-1)
            y1 = Y[1].reshape(-1)
            y2 = Y[2].reshape(-1)
            plt.fill_between(x, y0, where = y1 > y1, interpolate = True, color = 'blue')
            plt.fill_between(x, y0, where = y1 > y2, interpolate = True, color = 'blue')
            plt.fill_between(x, y1, where = y1 > y0, interpolate = True, color = 'red')
            plt.fill_between(x, y1, where = ((y1 > y2) * (y1 > y0)),interpolate = True, color = 'red')
            plt.fill_between(x, y2, where = (y2 > y0) * (y0 > 0),interpolate = True, color = 'green')
            plt.fill_between(x, y2, where = (y2 > y1), interpolate = True, color = 'green')
    plt.legend()
    plt.show()

Set the random seed:


In [ ]:
#Set the random seed

torch.manual_seed(0)

Make Some Data

Create some linearly separable data with three classes:


In [ ]:
# Create the data class

class Data(Dataset):
    
    # Constructor
    def __init__(self):
        self.x = torch.arange(-2, 2, 0.1).view(-1, 1)
        self.y = torch.zeros(self.x.shape[0])
        self.y[(self.x > -1.0)[:, 0] * (self.x < 1.0)[:, 0]] = 1
        self.y[(self.x >= 1.0)[:, 0]] = 2
        self.y = self.y.type(torch.LongTensor)
        self.len = self.x.shape[0]
        
    # Getter
    def __getitem__(self,index):      
        return self.x[index], self.y[index]
    
    # Get Length
    def __len__(self):
        return self.len

Create the dataset object:


In [ ]:
# Create the dataset object and plot the dataset object

data_set = Data()
data_set.x
plot_data(data_set)

Build a Softmax Classifier

Build a Softmax classifier by using the Sequential module:


In [ ]:
# Build Softmax Classifier technically you only need  linear  

model = nn.Sequential(nn.Linear(1, 3))
model.state_dict()

Train the Model

Create the criterion function, the optimizer and the dataloader


In [ ]:
# Create criterion function, optimizer, and dataloader

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
trainloader = DataLoader(dataset = data_set, batch_size = 5)

Train the model for every 50 epochs plot, the line generated for each class.


In [ ]:
# Train the model

LOSS = []
def train_model(epochs):
    for epoch in range(epochs):
        if epoch % 50 == 0:
            pass
            plot_data(data_set, model)
        for x, y in trainloader:
            optimizer.zero_grad()
            yhat = model(x)
            loss = criterion(yhat, y)
            LOSS.append(loss)
            loss.backward()
            optimizer.step()
train_model(300)

Analyze Results

Find the predicted class on the test data:


In [ ]:
# Make the prediction

z =  model(data_set.x)
_, yhat = z.max(1)
print("The prediction:", yhat)

Calculate the accuracy on the test data:


In [ ]:
# Print the accuracy

correct = (data_set.y == yhat).sum().item()
accuracy = correct / len(data_set)
print("The accuracy: ", accuracy)

About the Authors:

Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Other contributors: Michelle Carey, Mavis Zhou


Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.