Logistic Regression Training Mean Square Error

Table of Contents

In this lab, you will see what happens when you use the root mean square error cost or total loss function using random initialization for a parameter value.

Estimated Time Needed: 30 min


Preparation

We'll need the following libraries:


In [ ]:
# Import the libraries we need for this lab

import numpy as np
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn

The class plot_error_surfaces is just to help you visualize the data space and the parameter space during training and has nothing to do with PyTorch.


In [ ]:
# Create class for plotting and the function for plotting

class plot_error_surfaces(object):
    
    # Construstor
    def __init__(self, w_range, b_range, X, Y, n_samples = 30, go = True):
        W = np.linspace(-w_range, w_range, n_samples)
        B = np.linspace(-b_range, b_range, n_samples)
        w, b = np.meshgrid(W, B)    
        Z = np.zeros((30, 30))
        count1 = 0
        self.y = Y.numpy()
        self.x = X.numpy()
        for w1, b1 in zip(w, b):
            count2 = 0
            for w2, b2 in zip(w1, b1):
                Z[count1, count2] = np.mean((self.y - (1 / (1 + np.exp(-1 * (w2 * self.x + b2))))) ** 2)
                count2 += 1   
            count1 += 1
        self.Z = Z
        self.w = w
        self.b = b
        self.W = []
        self.B = []
        self.LOSS = []
        self.n = 0
        if go == True:
            plt.figure()
            plt.figure(figsize = (7.5, 5))
            plt.axes(projection = '3d').plot_surface(self.w, self.b, self.Z, rstride = 1, cstride = 1, cmap = 'viridis', edgecolor = 'none')
            plt.title('Loss Surface')
            plt.xlabel('w')
            plt.ylabel('b')
            plt.show()
            plt.figure()
            plt.title('Loss Surface Contour')
            plt.xlabel('w')
            plt.ylabel('b')
            plt.contour(self.w, self.b, self.Z)
            plt.show()
            
     # Setter
    def set_para_loss(self, model, loss):
        self.n = self.n + 1
        self.W.append(list(model.parameters())[0].item())
        self.B.append(list(model.parameters())[1].item())
        self.LOSS.append(loss)
    
    # Plot diagram
    def final_plot(self): 
        ax = plt.axes(projection = '3d')
        ax.plot_wireframe(self.w, self.b, self.Z)
        ax.scatter(self.W, self.B, self.LOSS, c = 'r', marker = 'x', s = 200, alpha = 1)
        plt.figure()
        plt.contour(self.w, self.b, self.Z)
        plt.scatter(self.W, self.B, c = 'r', marker = 'x')
        plt.xlabel('w')
        plt.ylabel('b')
        plt.show()
        
    # Plot diagram
    def plot_ps(self):
        plt.subplot(121)
        plt.ylim
        plt.plot(self.x, self.y, 'ro', label = "training points")
        plt.plot(self.x, self.W[-1] * self.x + self.B[-1], label = "estimated line")
        plt.plot(self.x, 1 / (1 + np.exp(-1 * (self.W[-1] * self.x + self.B[-1]))), label = 'sigmoid')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.ylim((-0.1, 2))
        plt.title('Data Space Iteration: ' + str(self.n))
        plt.show()
        plt.subplot(122)
        plt.contour(self.w, self.b, self.Z)
        plt.scatter(self.W, self.B, c = 'r', marker = 'x')
        plt.title('Loss Surface Contour Iteration' + str(self.n))
        plt.xlabel('w')
        plt.ylabel('b')
        
# Plot the diagram

def PlotStuff(X, Y, model, epoch, leg = True):
    plt.plot(X.numpy(), model(X).detach().numpy(), label = 'epoch ' + str(epoch))
    plt.plot(X.numpy(), Y.numpy(), 'r')
    if leg == True:
        plt.legend()
    else:
        pass

Set the random seed:


In [ ]:
# Set random seed

torch.manual_seed(0)

Get Some Data

Create the Data class


In [ ]:
# Create the data class

class Data(Dataset):
    
    # Constructor
    def __init__(self):
        self.x = torch.arange(-1, 1, 0.1).view(-1, 1)
        self.y = torch.zeros(self.x.shape[0], 1)
        self.y[self.x[:, 0] > 0.2] = 1
        self.len = self.x.shape[0]
        
    # Getter
    def __getitem__(self, index):      
        return self.x[index], self.y[index]
    
    # Get items
    def __len__(self):
        return self.len

Make Data object


In [ ]:
# Create Data object

data_set = Data()

Create the Model and Total Loss Function (Cost)

Create a custom module for logistic regression:


In [ ]:
# Create logistic_regression class

class logistic_regression(nn.Module):
    
    # Construstor
    def __init__(self,n_inputs):
        super(logistic_regression, self).__init__()
        self.linear = nn.Linear(n_inputs, 1)
        
    # Prediction    
    def forward(self, x):
        yhat = torch.sigmoid(self.linear(x))
        return yhat

Create a logistic regression object and print the parameters:


In [ ]:
# Create model object and print parameter

model = logistic_regression(1)
print("The parameters: ", model.state_dict())

Create a plot_error_surfaces object to visualize the data space and the parameter space during training:


In [ ]:
# Create plot_error_surfaces object

get_surface = plot_error_surfaces(15, 13, data_set[:][0], data_set[:][1], 30)

Create DataLoader object, cost or criterion function and optimizer:


In [ ]:
# Create DataLoader, Cost Function, Optimizer

trainloader = DataLoader(dataset = data_set, batch_size = 3)
criterion_rms = nn.MSELoss()
learning_rate = 2
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)

Train the Model via Batch Gradient Descent

Train the model


In [ ]:
# Train the model

def train_model(epochs):
    for epoch in range(epochs):  
        for x, y in trainloader:
            yhat = model(x)
            loss = criterion_rms(yhat, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            get_surface.set_para_loss(model, loss.tolist())
        if epoch % 20 == 0:
            get_surface.plot_ps()

train_model(100)

Get the actual class of each sample and calculate the accuracy on the test data.


In [ ]:
# Make the Prediction

yhat = model(data_set.x)
label = yhat > 0.5
print("The accuracy: ", torch.mean((label == data_set.y.type(torch.ByteTensor)).type(torch.float)))

The accuracy is perfect.

About the Authors:

Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Other contributors: Michelle Carey, Mavis Zhou


Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.