Linear Regression Multiple Outputs

Table of Contents

In this lab, you will create a model the Pytroch way. This will help you as models get more complicated.


Import the following libraries:


In [12]:
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch import nn,optim
from mpl_toolkits.mplot3d import Axes3D
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms

Set the random seed:


In [13]:
torch.manual_seed(1)


Out[13]:
<torch._C.Generator at 0x1056c1fb0>

Make Some Data

Create a dataset class with two-dimensional features and two targets:


In [14]:
from torch.utils.data import Dataset, DataLoader
class Data(Dataset):
    def __init__(self):
            self.x=torch.zeros(20,2)
            self.x[:,0]=torch.arange(-1,1,0.1)
            self.x[:,1]=torch.arange(-1,1,0.1)
            self.w=torch.tensor([ [1.0,-1.0],[1.0,3.0]])
            self.b=torch.tensor([[1.0,-1.0]])
            self.f=torch.mm(self.x,self.w)+self.b
            
            self.y=self.f+0.001*torch.randn((self.x.shape[0],1))
            self.len=self.x.shape[0]

    def __getitem__(self,index):

        return self.x[index],self.y[index]
    
    def __len__(self):
        return self.len

create a dataset object


In [15]:
data_set=Data()

Create the Model, Optimizer, and Total Loss Function (cost)

Create a custom module:


In [16]:
class linear_regression(nn.Module):
    def __init__(self,input_size,output_size):
        super(linear_regression,self).__init__()
        self.linear=nn.Linear(input_size,output_size)
    def forward(self,x):
        yhat=self.linear(x)
        return yhat

Create an optimizer object and set the learning rate to 0.1. Don't forget to enter the model parameters in the constructor.


In [17]:
model=linear_regression(2,2)

Create an optimizer object and set the learning rate to 0.1. Don't forget to enter the model parameters in the constructor.


In [18]:
optimizer = optim.SGD(model.parameters(), lr = 0.1)

Create the criterion function that calculates the total loss or cost:


In [19]:
criterion = nn.MSELoss()

Create a data loader object and set the batch_size to 5:


In [20]:
train_loader=DataLoader(dataset=data_set,batch_size=5)

Train the Model via Mini-Batch Gradient Descent

Run 100 epochs of Mini-Batch Gradient Descent and store the total loss or cost for every iteration. Remember that this is an approximation of the true total loss or cost.


In [21]:
LOSS=[]
 
epochs=100
   
for epoch in range(epochs):
    for x,y in train_loader:
        #make a prediction 
        yhat=model(x)
        #calculate the loss
        loss=criterion(yhat,y)
        #store loss/cost 
        LOSS.append(loss.item())
        #clear gradient 
        optimizer.zero_grad()
        #Backward pass: compute gradient of the loss with respect to all the learnable parameters
        loss.backward()
        #the step function on an Optimizer makes an update to its parameters
        optimizer.step()

Plot the cost:


In [22]:
plt.plot(LOSS)
plt.xlabel("iterations ")
plt.ylabel("Cost/total loss ")


Out[22]:
Text(0,0.5,'Cost/total loss ')

In [ ]:

About the Authors:

Joseph Santarcangelo has a PhD in Electrical Engineering. His research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition.

Other contributors: Michelle Carey


Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.


In [ ]: