In [ ]:
# Ensure python 3 compatibility
from __future__ import division, print_function, absolute_import, unicode_literals
# Import necessary libraries:
# General utilities:
from os import path
# Computation:
import numpy as np
import h5py
# Visualization:
import matplotlib.pyplot as plt
# Finally, pycroscopy itself
import pycroscopy as px
# set up notebook to show plots within the notebook
% matplotlib inline
In [ ]:
ui_file_window = False
try:
from PyQt5 import QtWidgets
def uiGetFile(filter='H5 file (*.h5)', caption='Select File'):
"""
Presents a File dialog used for selecting the .mat file
and returns the absolute filepath of the selecte file\n
Parameters
----------
extension : String or list of strings
file extensions to look for
caption : (Optional) String
Title for the file browser window
Returns
-------
file_path : String
Absolute path of the chosen file
"""
app = QtWidgets.QApplication([])
path = QtWidgets.QFileDialog.getOpenFileName(caption=caption, filter=filter)[0]
app.exit()
del app
return str(path)
ui_file_window = True
except ImportError:
print('***********************************************************')
print('* *')
print('* You will need to specify the file path manually below *')
print('* *')
print('***********************************************************')
Converting the raw data into a pycroscopy compatible hierarchical data format (HDF or .h5) file gives you access to the fast fitting algorithms and powerful analysis functions within pycroscopy
You can select desired file type by choosing the second option in the pull down menu on the bottom right of the file window
In [ ]:
if ui_file_window:
input_file_path = uiGetFile(caption='Select translated .h5 file or raw experiment data',
filter='Parameters for raw G-Line data (*.txt);; \
Translated file (*.h5)')
else:
input_file_path = '/Volumes/IFgroup/SPM software development/Raw_Data/G_mode/GVS/2015_04_08_PZT_AuCu_nanocaps/GLine_8V_10kHz_256x256_0001/GLine_8V_10kHz_256x256.h5'
folder_path, _ = path.split(input_file_path)
if input_file_path.endswith('.txt'):
print('Translating raw data to h5. Please wait')
tran = px.GLineTranslator()
h5_path = tran.translate(input_file_path)
else:
h5_path = input_file_path
print('Working on:\n' + h5_path)
In [ ]:
hdf = px.ioHDF5(h5_path)
h5_main = px.hdf_utils.getDataSet(hdf.file, 'Raw_Data')[-1]
parms_dict = h5_main.parent.parent.attrs
samp_rate = parms_dict['IO_rate_[Hz]']
ex_freq = parms_dict['BE_center_frequency_[Hz]']
h5_spec_vals = px.hdf_utils.getAuxData(h5_main, auxDataName='Spectroscopic_Values')[0]
pixel_ex_wfm = h5_spec_vals[0, :int(h5_spec_vals.shape[1]/parms_dict['grid_num_cols'])]
The file contents are stored in a tree structure, just like files on a conventional computer. The data is stored as a 2D matrix (position, spectroscopic value) regardless of the dimensionality of the data. Thus, the positions will be arranged as row0-col0, row0-col1.... row0-colN, row1-col0.... and the data for each position is stored as it was chronologically collected
The main dataset is always accompanied by four ancillary datasets that explain the position and spectroscopic value of any given element in the dataset.
Note that G-mode data is acquired line-by-line rather than pixel-by-pixel.
In [ ]:
print('Datasets and datagroups within the file:\n------------------------------------')
px.io.hdf_utils.print_tree(hdf.file)
print('\nThe main dataset:\n------------------------------------')
print(h5_main)
print('\nThe ancillary datasets:\n------------------------------------')
print(hdf.file['/Measurement_000/Channel_000/Position_Indices'])
print(hdf.file['/Measurement_000/Channel_000/Position_Values'])
print(hdf.file['/Measurement_000/Channel_000/Spectroscopic_Indices'])
print(hdf.file['/Measurement_000/Channel_000/Spectroscopic_Values'])
print('\nMetadata or attributes in a datagroup\n------------------------------------')
for key in hdf.file['/Measurement_000'].attrs:
print('{} : {}'.format(key, hdf.file['/Measurement_000'].attrs[key]))
In [ ]:
row_ind = 40
raw_row = h5_main[row_ind].reshape(-1, pixel_ex_wfm.size)
fig, axes = px.plot_utils.plot_loops(pixel_ex_wfm, raw_row, x_label='Bias (V)', title='Raw Measurement',
plots_on_side=4, y_label='Deflection (a.u.)',
subtitles='Row: ' + str(row_ind) + ' Col:')
In [ ]:
filter_parms = dict()
filter_parms['noise_threshold'] = 1E-4
filter_parms['comb_[Hz]'] = [ex_freq, 1E+3, 10]
# filter_parms['LPF_cutOff_[Hz]'] = -1
# Noise frequencies - 15.6 kHz ~ 14-17.5, 7.8-8.8, 45-49.9 ~ 48.9414 kHz
# filter_parms['band_filt_[Hz]'] = None # [[8.3E+3, 15.6E+3, 48.9414E+3], [1E+3, 0.5E+3, 0.1E+3]]
# filter_parms['phase_[rad]'] = 0
filter_parms['samp_rate_[Hz]'] = samp_rate
filter_parms['num_pix'] = 1
# Test filter on a single line:
row_ind = 40
filt_line, fig_filt, axes_filt = px.processing.gmode_utils.test_filter(h5_main[row_ind], filter_parms, samp_rate,
show_plots=True, use_rainbow_plots=False)
fig_filt.savefig(path.join(folder_path, 'FFT_filter_on_line_{}.png'.format(row_ind)), format='png', dpi=300)
filt_row = filt_line.reshape(-1, pixel_ex_wfm.size)
fig, axes = px.plot_utils.plot_loops(pixel_ex_wfm, filt_row, x_label='Bias (V)', title='FFT Filtering',
plots_on_side=4, y_label='Deflection (a.u.)',
subtitles='Row: ' + str(row_ind) + ' Col:')
# fig.savefig(path.join(folder_path, 'FFT_filtered_loops_on_line_{}.png'.format(row_ind)), format='png', dpi=300)
In [ ]:
# h5_filt_grp = px.hdf_utils.findH5group(h5_main, 'FFT_Filtering')[-1]
h5_filt_grp = px.processing.gmode_utils.fft_filter_dataset(h5_main, filter_parms, write_filtered=True)
h5_filt = h5_filt_grp['Filtered_Data']
# Test to make sure the filter gave the same results
filt_row = h5_filt[row_ind].reshape(-1, pixel_ex_wfm.size)
fig, axes = px.plot_utils.plot_loops(pixel_ex_wfm, filt_row, x_label='Bias (V)', title='FFT Filtering',
plots_on_side=4, y_label='Deflection (a.u.)',
subtitles='Row: ' + str(row_ind) + ' Col:')
In [ ]:
# h5_resh = h5_filt_grp['Filtered_Data-Reshape_000/Reshaped_Data']
h5_resh = px.processing.gmode_utils.reshape_from_lines_to_pixels(h5_filt, pixel_ex_wfm.size, 1)
fig, axes = px.plot_utils.plot_loops(pixel_ex_wfm, h5_resh, x_label='Bias (V)', title='FFT Filtering',
plots_on_side=5, y_label='Deflection (a.u.)')
# fig.savefig(path.join(folder_path, 'FFT_filtered_loops_on_line_{}.png'.format(row_ind)), format='png', dpi=300)
In [ ]:
hdf.close()
In [ ]: