In [ ]:
!pip install -U numpy matplotlib Ipython ipywidgets pycroscopy
# Ensure python 3 compatibility
from __future__ import division, print_function, absolute_import
# Import necessary libraries:
# General utilities:
import sys
import os
# Computation:
import numpy as np
import h5py
# Visualization:
import matplotlib.pyplot as plt
from IPython.display import display
import ipywidgets as widgets
# Finally, pycroscopy itself
import pycroscopy as px
# set up notebook to show plots within the notebook
% matplotlib inline
In [ ]:
max_mem = 1024*8 # Maximum memory to use, in Mbs. Default = 1024
max_cores = None # Number of logical cores to use in fitting. None uses all but 2 available cores.
Converting the raw data into a pycroscopy compatible hierarchical data format (HDF or .h5) file gives you access to the fast fitting algorithms and powerful analysis functions within pycroscopy
You can select desired file type by choosing the second option in the pull down menu on the bottom right of the file window
In [ ]:
input_file_path = px.io_utils.uiGetFile(caption='Select translated .h5 file or raw experiment data',
filter='Parameters for raw BE data (*.txt *.mat *xls *.xlsx);; \
Translated file (*.h5)')
(data_dir, data_name) = os.path.split(input_file_path)
if input_file_path.endswith('.h5'):
# No translation here
h5_path = input_file_path
force = False # Set this to true to force patching of the datafile.
tl = px.LabViewH5Patcher()
hdf = tl.translate(h5_path, force_patch=force)
else:
# Set the data to be translated
data_path = input_file_path
(junk, base_name) = os.path.split(data_dir)
# Check if the data is in the new or old format. Initialize the correct translator for the format.
if base_name == 'newdataformat':
(junk, base_name) = os.path.split(junk)
translator = px.BEPSndfTranslator(max_mem_mb=max_mem)
else:
translator = px.BEodfTranslator(max_mem_mb=max_mem)
if base_name.endswith('_d'):
base_name = base_name[:-2]
# Translate the data
h5_path = translator.translate(data_path, show_plots=True, save_plots=False)
hdf = px.ioHDF5(h5_path)
print('Working on:\n' + h5_path)
h5_main = px.hdf_utils.getDataSet(hdf.file, 'Raw_Data')[0]
The file contents are stored in a tree structure, just like files on a conventional computer. The data is stored as a 2D matrix (position, spectroscopic value) regardless of the dimensionality of the data. Thus, the positions will be arranged as row0-col0, row0-col1.... row0-colN, row1-col0.... and the data for each position is stored as it was chronologically collected
The main dataset is always accompanied by four ancillary datasets that explain the position and spectroscopic value of any given element in the dataset.
In [ ]:
print('Datasets and datagroups within the file:\n------------------------------------')
px.io.hdf_utils.print_tree(hdf.file)
print('\nThe main dataset:\n------------------------------------')
print(h5_main)
print('\nThe ancillary datasets:\n------------------------------------')
print(hdf.file['/Measurement_000/Channel_000/Position_Indices'])
print(hdf.file['/Measurement_000/Channel_000/Position_Values'])
print(hdf.file['/Measurement_000/Channel_000/Spectroscopic_Indices'])
print(hdf.file['/Measurement_000/Channel_000/Spectroscopic_Values'])
print('\nMetadata or attributes in a datagroup\n------------------------------------')
for key in hdf.file['/Measurement_000'].attrs:
print('{} : {}'.format(key, hdf.file['/Measurement_000'].attrs[key]))
In [ ]:
h5_pos_inds = px.hdf_utils.getAuxData(h5_main, auxDataName='Position_Indices')[-1]
pos_sort = px.hdf_utils.get_sort_order(np.transpose(h5_pos_inds))
pos_dims = px.hdf_utils.get_dimensionality(np.transpose(h5_pos_inds), pos_sort)
pos_labels = np.array(px.hdf_utils.get_attr(h5_pos_inds, 'labels'))[pos_sort]
print(pos_labels, pos_dims)
parm_dict = hdf.file['/Measurement_000'].attrs
is_ckpfm = hdf.file.attrs['data_type'] == 'cKPFMData'
if is_ckpfm:
num_write_steps = parm_dict['VS_num_DC_write_steps']
num_read_steps = parm_dict['VS_num_read_steps']
num_fields = 2
In [ ]:
px.be_viz_utils.jupyter_visualize_be_spectrograms(h5_main)
Fit each of the acquired spectra to a simple harmonic oscillator (SHO) model to extract the following information regarding the response:
By default, the cell below will take any previous result instead of re-computing the SHO fit
In [ ]:
sho_fit_points = 5 # The number of data points at each step to use when fitting
h5_sho_group = px.hdf_utils.findH5group(h5_main, 'SHO_Fit')
sho_fitter = px.BESHOmodel(h5_main, parallel=True)
if len(h5_sho_group) == 0:
print('No SHO fit found. Doing SHO Fitting now')
h5_sho_guess = sho_fitter.do_guess(strategy='complex_gaussian', processors=max_cores, options={'num_points':sho_fit_points})
h5_sho_fit = sho_fitter.do_fit(processors=max_cores)
else:
print('Taking previous SHO results already present in file')
h5_sho_guess = h5_sho_group[-1]['Guess']
try:
h5_sho_fit = h5_sho_group[-1]['Fit']
except KeyError:
print('Previously computed guess found. Now computing fit')
h5_sho_fit = sho_fitter.do_fit(processors=max_cores, h5_guess=h5_sho_guess)
Here, we visualize the parameters for the SHO fits. BE-line (3D) data is visualized via simple spatial maps of the SHO parameters while more complex BEPS datasets (4+ dimensions) can be visualized using a simple interactive visualizer below.
You can choose to visualize the guesses for SHO function or the final fit values from the first line of the cell below.
Use the sliders below to inspect the BE response at any given location.
In [ ]:
h5_sho_spec_inds = px.hdf_utils.getAuxData(h5_sho_fit, auxDataName='Spectroscopic_Indices')[0]
sho_spec_labels = px.io.hdf_utils.get_attr(h5_sho_spec_inds,'labels')
if is_ckpfm:
# It turns out that the read voltage index starts from 1 instead of 0
# Also the VDC indices are NOT repeating. They are just rising monotonically
write_volt_index = np.argwhere(sho_spec_labels == 'write_bias')[0][0]
read_volt_index = np.argwhere(sho_spec_labels == 'read_bias')[0][0]
h5_sho_spec_inds[read_volt_index, :] -= 1
h5_sho_spec_inds[write_volt_index, :] = np.tile(np.repeat(np.arange(num_write_steps), num_fields), num_read_steps)
(Nd_mat, success, nd_labels) = px.io.hdf_utils.reshape_to_Ndims(h5_sho_fit, get_labels=True)
print('Reshape Success: ' + str(success))
print(nd_labels)
print(Nd_mat.shape)
In [ ]:
use_sho_guess = False
use_static_viz_func = False
if use_sho_guess:
sho_dset = h5_sho_guess
else:
sho_dset = h5_sho_fit
data_type = px.io.hdf_utils.get_attr(hdf.file, 'data_type')
if data_type == 'BELineData' or len(pos_dims) != 2:
use_static_viz_func = True
step_chan = None
else:
vs_mode = px.io.hdf_utils.get_attr(h5_main.parent.parent, 'VS_mode')
if vs_mode not in ['AC modulation mode with time reversal',
'DC modulation mode']:
use_static_viz_func = True
else:
if vs_mode == 'DC modulation mode':
step_chan = 'DC_Offset'
else:
step_chan = 'AC_Amplitude'
if not use_static_viz_func:
try:
# use interactive visualization
px.be_viz_utils.jupyter_visualize_beps_sho(sho_dset, step_chan)
except:
raise
print('There was a problem with the interactive visualizer')
use_static_viz_func = True
if use_static_viz_func:
# show plots of SHO results vs. applied bias
px.be_viz_utils.visualize_sho_results(sho_dset, show_plots=True,
save_plots=False)
In [ ]:
# Do the Loop Fitting on the SHO Fit dataset
loop_success = False
h5_loop_group = px.hdf_utils.findH5group(h5_sho_fit, 'Loop_Fit')
if len(h5_loop_group) == 0:
try:
loop_fitter = px.BELoopModel(h5_sho_fit, parallel=True)
print('No loop fits found. Fitting now....')
h5_loop_guess = loop_fitter.do_guess(processors=max_cores, max_mem=max_mem)
h5_loop_fit = loop_fitter.do_fit(processors=max_cores, max_mem=max_mem)
loop_success = True
except ValueError:
print('Loop fitting is applicable only to DC spectroscopy datasets!')
else:
loop_success = True
print('Taking previously computed loop fits')
h5_loop_guess = h5_loop_group[-1]['Guess']
h5_loop_fit = h5_loop_group[-1]['Fit']
In [ ]:
# Prepare some variables for plotting loops fits and guesses
# Plot the Loop Guess and Fit Results
if loop_success:
h5_projected_loops = h5_loop_guess.parent['Projected_Loops']
h5_proj_spec_inds = px.hdf_utils.getAuxData(h5_projected_loops,
auxDataName='Spectroscopic_Indices')[-1]
h5_proj_spec_vals = px.hdf_utils.getAuxData(h5_projected_loops,
auxDataName='Spectroscopic_Values')[-1]
# reshape the vdc_vec into DC_step by Loop
sort_order = px.hdf_utils.get_sort_order(h5_proj_spec_inds)
dims = px.hdf_utils.get_dimensionality(h5_proj_spec_inds[()],
sort_order[::-1])
vdc_vec = np.reshape(h5_proj_spec_vals[h5_proj_spec_vals.attrs['DC_Offset']], dims).T
#Also reshape the projected loops to Positions-DC_Step-Loop
# Also reshape the projected loops to Positions-DC_Step-Loop
proj_nd, _ = px.hdf_utils.reshape_to_Ndims(h5_projected_loops)
proj_3d = np.reshape(proj_nd, [h5_projected_loops.shape[0],
proj_nd.shape[2], -1])
In [ ]:
use_static_plots = False
if loop_success:
if not use_static_plots:
try:
px.be_viz_utils.jupyter_visualize_beps_loops(h5_projected_loops, h5_loop_guess, h5_loop_fit)
except:
print('There was a problem with the interactive visualizer')
use_static_plots = True
if use_static_plots:
for iloop in range(h5_loop_guess.shape[1]):
fig, ax = px.be_viz_utils.plot_loop_guess_fit(vdc_vec[:, iloop], proj_3d[:, :, iloop],
h5_loop_guess[:, iloop], h5_loop_fit[:, iloop],
title='Loop {} - All Positions'.format(iloop))
In [ ]:
# hdf.close()
In [ ]: