Data were munged here.
In [1]:
import pandas as pd
import numpy as np
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
df = pd.read_csv('../../data/processed/complaints-3-29-scrape.csv')
In [2]:
df[(df['facility_id']=='5MA223') & (df['year']==2015) & (df['outcome'].str.contains('edication'))].count()[0]
Out[2]:
In [3]:
df['incident_date'][(df['facility_id']=='5MA223') & (df['year']==2015) & (df['outcome'].str.contains('edication'))]
Out[3]:
Between January and April.
In [4]:
df[(df['facility_id']=='5MA223') &
(df['year']==2015) &
(df['outcome'].str.contains('edication')) &
(df['public']=='offline')
].count()[0]
Out[4]: