In [1]:
import pandas as pd
import numpy as np
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
The Department of Human Services provided us with seven spreadsheets that each have information about substantiated complaints against assisted living, residential care, and nursing facilities in Oregon. The purpose of this notebook is to mung them, standardizing the column names, removing unnecessary columns, and cleaning some fields. The second purpose of this notebook is to get initial ownership date for facilities from the owner_history table and assign it to each facility.
In [2]:
#Five years of detailed complaint data for all four kinds of facilities (Residential Care, Assisted Living, Nursing, and Adult Foster Home)
detailed = pd.read_excel('../../data/raw/Oregonian Abuse records 5 years May 2016.xlsx', header=3)
#Ten years of non-detailed complaints for Nursing Facilities
NF_complaints = pd.read_excel('../../data/raw/Copy of Oregonian Data Request Facility Abuse Records April 2016 Reviewed.xlsx',sheetname='NF Complaints')
#Ten years of non-detailed complaints for Assisted Living Facilities
ALF_complaints = pd.read_excel('../../data/raw/Copy of Oregonian Data Request Facility Abuse Records April 2016 Reviewed.xlsx',sheetname='ALF Complaints')
#Ten years of non-detailed complaints for Residential Care Facilities
RCF_complaints = pd.read_excel('../../data/raw/Copy of Oregonian Data Request Facility Abuse Records April 2016 Reviewed.xlsx',sheetname='RCF Complaints')
In [3]:
#NF has an inconsistently named column
NF_complaints.rename(columns={'Abuse_CbcAbuse': 'CbcAbuse'}, inplace=True)
In [4]:
ten_year_complaints = pd.concat([RCF_complaints,ALF_complaints,NF_complaints], ignore_index=True).reset_index().drop('index',1)
In [5]:
ten_year_complaints.rename(columns={'Abuse_Number':'abuse_number', 'Facility ID':'facility_id','Incident Date':'incident_date','Fac Type': 'facility_type','FineAssessed':'fine',
'Investigation Results':'results_1','FacilityInvestResultsAbuse':'results_2','FacilityInvestResultsRule':'results_3','OutcomeCode':'outcome_code',
'CbcAbuse':'abuse_type'}, inplace=True)
In [6]:
ten_year_complaints = ten_year_complaints[['abuse_number','facility_id','incident_date','results_1','fine',
'results_2','results_3','outcome_code','abuse_type']][ten_year_complaints['abuse_number'].notnull()]
In [7]:
sub_comps = pd.read_excel('../../data/raw/52 mislabelled as unsubstantiated.xlsx', header=None, names=['abuse_number'])
In [8]:
miss_comps = sub_comps.merge(ten_year_complaints, how = 'left', left_on='abuse_number',right_on='abuse_number')#.count()
This dataset contains unsubstantiated complaints, which we don't need. There are three columns that indicate substantiation. A DHS person explained that if any one of them has the word 'substantiated,' then the complaint was substantiated.
In [9]:
ten_year_complaints = ten_year_complaints[(ten_year_complaints['results_1']=='Substantiated')|
(ten_year_complaints['results_2']=='Substantiated')|
(ten_year_complaints['results_3']=='Substantiated')]
In [10]:
ten_year_complaints = pd.concat([ten_year_complaints,miss_comps]).reset_index().drop('index',1)
In [11]:
ten_year_ready = ten_year_complaints[['abuse_number','facility_id','incident_date','outcome_code','abuse_type', 'fine']].reset_index().drop('index',1)
The 'detailed' data is a five-year set of substantiated complaints against all facilities, including adult foster homes, which we don't want.
In [12]:
detailed.rename(columns={'Abuse_Number':'abuse_number','Facility ID':'facility_id',
'Incident Date':'incident_date','Investigation Results':'results_1',
'Facility Invest Results Abuse':'results_2','Facility Invest Results Rule':'results_3',
'Outcome Code':'outcome_code','Action Notes':'action_notes','Outcome Notes':'outcome_notes',
'Cbc Abuse Indicator':'abuse_type', 'Facility Type':'facility_type', 'Fine Assessed':'fine'}, inplace=True)
Drop Adult Foster Homes and select columns.
In [13]:
five_year_complaints = detailed[['abuse_number','facility_id','facility_type','incident_date','outcome_code',
'action_notes','outcome_notes','fine','abuse_type']][detailed['facility_type']!='AFH']
No longer need the facility_type field.
In [14]:
five_year_ready = five_year_complaints.drop('facility_type',1)
There are thousands of complaints that appear in both datasets. If a complaint is a duplicate, we want to keep the one that is in the five-year set, because that one has richer data. To do this, we will add a 'source' column to each dataframe, value '1' for the five-year data and '2' for the ten-year data. We will then sort based on that column, then de-duplicate on the abuse_number field, telling pandas to keep the first instance of the duplicate that it finds.
In [15]:
five_year_ready['source']=1
In [16]:
ten_year_ready['source']=2
In [17]:
five_ten_concat = pd.concat([five_year_ready,ten_year_ready])
Set abuse_numbers to uppercase (three abuse numbers in ten-year data have lowercase)
In [18]:
five_ten_concat['abuse_number'] = five_ten_concat['abuse_number'].apply(lambda x:x.upper())
In [19]:
five_ten_concat = five_ten_concat.sort_values('source')
In [20]:
complaints = five_ten_concat.drop_duplicates(subset='abuse_number', keep='first').reset_index().drop('index',1)
Add a 'year' column based on incident date.
In [21]:
complaints['year']=complaints['incident_date'].dt.year.astype(int)
In [22]:
complaints.count()
Out[22]:
In [23]:
complaints['abuse_type'].fillna('',inplace=True)
In [24]:
complaints['abuse_type'] = complaints['abuse_type'].apply(lambda x: x.upper())
In [25]:
complaints["abuse_type"] = complaints["abuse_type"].apply(dict([
('0', ''),
('1', ''),
('2', ''),
('363', ''),
('I', ''),
('A', 'A'),
('L', 'L'),
]).get).fillna('')
Complaints were scraped from https://apps.state.or.us/cf2/spd/facility_complaints/ using the script in ..scraper/DHS_scraper.py
In [26]:
scraped_comp_3_29 = pd.read_csv('../../data/scraped/scraped_complaints_3_29.csv')
Set all abuse numbers to upper case.
In [27]:
scraped_comp_3_29['abuse_number'] = scraped_comp_3_29['abuse_number'].apply(lambda x: x.upper())
In [28]:
scraped_comp_3_29 = scraped_comp_3_29.drop_duplicates(subset='abuse_number').drop(['fac_type','inv_comp_date','city_name'],1)
In [29]:
merged = complaints.merge(scraped_comp_3_29, how = 'left',on = 'abuse_number')
In [30]:
merged['outcome_code'] = merged['outcome_code'].fillna(0)
Add a column that tells us if the complaint has an equivalent online, based on the present of the online name.
In [31]:
merged['public'] = np.where(merged['online_fac_name'].notnull(),'online','offline')
In [32]:
codes = pd.read_excel('../../data/raw/OLRO Outcome Codes.xlsx', header=3)
codes.rename(columns = {'Code':'outcome_code','Display Text':'outcome'}, inplace = True)
codes['outcome_code'] = codes['outcome_code'].astype(str)
codes = codes.drop('Definition',1)
In [33]:
merged['outcome_code'] = merged['outcome_code'].astype(int).astype(str)
In [34]:
merged = merged.merge(codes, how = 'left')
In [36]:
merged['online_fac_name'].fillna('',inplace=True)
In [37]:
facilities = pd.read_csv('../../data/raw/APD_FacilityRecords.csv')
In [38]:
facilities.rename(columns={'FACID':'facid','Facility ID':'facility_id','FAC_CCMUNumber':'fac_ccmunumber','FAC_Type':'facility_type',
'FAC_Capacity':'fac_capacity','Facility Name':'facility_name','Facility Address':'street',
'Other Service':'other_service','Owner':'owner','Operator':'operator'}, inplace=True)
Select the columns we need and drop the one duplicate in here.
In [39]:
facilities = facilities[['facility_id','fac_ccmunumber','facility_type','fac_capacity','facility_name']].drop_duplicates(subset='facility_id', keep='last')
Churchill Estates Residential Care has blank facility_type and capacity fields. The facility is an RCF.
In [40]:
facilities.loc[318,'facility_type']='RCF'
facilities.loc[318,'fac_capacity']=108
This eliminates complaints without facilities.
In [41]:
merged_comp_fac = facilities.merge(merged, on = 'facility_id',how = 'left')
The analysis is only of complaints in 2005 or later.
In [42]:
merged_comp_fac = merged_comp_fac[['abuse_number','facility_id','facility_type','facility_name','abuse_type','fine','action_notes','incident_date','outcome','outcome_notes',
'year','online_fac_name','public']][merged_comp_fac['year']>2004]
merged_comp_fac has all the complaints we need for the complaints analysis.
In [54]:
complaint_pivot = merged_comp_fac.pivot_table(values='abuse_number',index='facility_id',columns='public', aggfunc='count').reset_index()
Next, left join the facilities to the pivot table.
In [56]:
fac_pivot_merge = facilities.merge(complaint_pivot, how='left',on='facility_id')
In [57]:
merged_comp_fac["omg_outcome"] = merged_comp_fac["outcome"].apply(dict([
('No Negative Outcome', 'Potential harm'),
('Exposed to Potential Harm', 'Potential harm'),
('Fall Without Injury', 'Fall, no injury'),
('Left facility without assistance without injury', 'Left facility without attendant, no injury'),
('Loss of Dignity', 'Loss of Dignity'),
('Fall with Injury', 'Fracture or other injury'),
('Injury During Self-Transfer', 'Fracture or other injury'),
('Fall Resulting In Fractured Bone(s)', 'Fracture or other injury'),
('Fall Resulting In Fractured Hip', 'Fracture or other injury'),
('Transfer Resulting In Skin Injury or Bruise', 'Fracture or other injury'),
('Fractured Bone', 'Fracture or other injury'),
('Fractured Hip', 'Fracture or other injury'),
('Burned', 'Fracture or other injury'),
('Transfer Resulting In Fractured Hip', 'Fracture or other injury'),
('Transfer Resulting In Fracture Bone(s)', 'Fracture or other injury'),
('Left Facility Without Assistance With Injury', 'Fracture or other injury'),
('Bruised', 'Fracture or other injury'),
('Skin Injury', 'Fracture or other injury'),
('Negative Behavior Escalated, Affected Other Resident(s)', 'Failure to address resident aggression'),
('Medical Condition Developed or Worsened', 'Medical condition developed or worsened'),
('Decubitus Ulcer(s) Developed', 'Medical condition developed or worsened'),
('Decubitus Ulcer(s) Worsened', 'Medical condition developed or worsened'),
('Urinary Tract Infection Worsened', 'Medical condition developed or worsened'),
('Transfer To Hospital For Treatment', 'Medical condition developed or worsened'),
('Received Incorrect or Wrong Dose of Medication(s)', 'Medication error'),
('The resident did not receive an ordered medication', 'Medication error'),
('Loss of Resident Property', 'Loss of property, theft or financial exploitation'),
('Loss of Medication', 'Loss of property, theft or financial exploitation'),
('Financially Exploited', 'Loss of property, theft or financial exploitation'),
('Unreasonable Discomfort', 'Unreasonable discomfort or continued pain'),
('Pain And Suffering Continued', 'Unreasonable discomfort or continued pain'),
('Undesirable Weight Loss', 'Weight loss'),
('Poor Continuity Of Care', 'Inadequate care'),
('Failed To Have Quality of Life Maintained or Enhanced', 'Inadequate care'),
('Failed to Receive Needed Services', 'Inadequate care'),
('Denied Choice In Treatment', 'Inadequate care'),
('Incontinence', 'Inadequate hygiene'),
('Inadequate Hygiene', 'Inadequate hygiene'),
('Physically Abused', 'Physical abuse'),
('Corporally Punished', 'Physical abuse'),
('Verbally Abused', 'Verbal or emotional abuse'),
('Mentally or Emotionally Abused', 'Verbal or emotional abuse'),
('Involuntarily Secluded', 'Involuntary seclusion'),
('Raped', 'Sexual abuse'),
('Sexually Abused', 'Sexual abuse'),
('Deceased', 'Death'),
('Facility was understaffed with no negative outcome', 'Staffing issues'),
('Unable to timely assess adequacy of staffing', 'Staffing issues'),
('Improperly Transferred Out of Facility, Denied Readmission or Inappropriate Move Within Facility', 'Denied readmission or moved improperly'),
]).get).fillna('')
In [58]:
merged_comp_fac.to_csv('../../data/processed/complaints-3-29-scrape.csv',index=False)
In [59]:
fac_pivot_merge.to_csv('../../data/processed/facilities-3-29-scrape.csv',index=False)