Linear Model
with $\xi_{n-1}\sim N(0,B)$ and $z_{0}\sim N(0,0.4)$
Observations \begin{equation} y_n=z_n+\eta_n \end{equation} $\eta_{n-1}\sim N(0,R)$
Kalman filter
Forecast formulas: \begin{align} \hat{m}_{n+1}&=Am_n\\ \hat{C}_{n+1}&=AC_nA^{\top}+B \end{align}
Analysis formulas \begin{align} m_{n+1}&=\hat{m}_{n+1}-K_{n+1}(H\hat{m}_{n+1}-y_{n+1})\\ C_{n+1}&=\hat{C}_{n+1}-K_{n+1}H\hat{C}_{n+1} \end{align}
with Kalman gain \begin{equation} K_{n+1}=\hat{C}_{n+1}H^{\top}(R+H\hat{C}_{n+1}H^{\top})^{-1} \end{equation}
Exercise: Please implement the Kalman filter for the example above
In [70]:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import scipy.io as sio
import math
In [92]:
n=100 # number of iterations
#initial
B=0.15 # Model Noise
R=0.02 # Observation Noise
A = 0.5 # Model Matrix
# creation of numpy arrays for variables
z= np.zeros(n)
m= np.zeros(n)
y= np.zeros(n)
C= np.zeros(n)
K= np.zeros(n)
# initial values for covariance and mean of the posterior
C[0]=0.4
m[0]=0
# initial values of model (truth) and observation data
z[0]=np.random.normal(loc=0.0, scale=0.4, size=None)
y[0]=z[0] + np.random.normal(loc=0.0, scale=R, size=None)
In [93]:
# iteration through kalman filter
for i in range(0,n-1,1):
z[i+1]=A*z[i]+np.random.normal(loc=0.0, scale=B, size=None) # evolution of model
y[i+1]=z[i+1] + np.random.normal(loc=0.0, scale=R, size=None) # evolution of observ.
#forecast formulas
m[i+1]=A*m[i]
C[i+1]=A*A*C[i]+B
K[i+1]=C[i+1]/(R+C[i+1]) # kalman gain
# analysis formulas
m[i+1]=m[i+1]-K[i+1]*(m[i+1]-y[i+1])
C[i+1]=C[i+1]-K[i+1]*C[i+1]
In [94]:
print m[-1]
print C[-1]
print np.mean(z)
print np.cov(z)
In [100]:
# plot initial cond.
mu = 0
variance = 0.4
sigma = math.sqrt(variance)
x = np.linspace(mu-3*sigma,mu+3*sigma, 100)
plt.plot(x,mlab.normpdf(x, mu, sigma),"b", label="initial")
# plot posterior
mu_1 = m[-1]
variance_1 = C[-1]
sigma_1 = math.sqrt(variance_1)
x_1 = np.linspace(mu_1-3*sigma_1,mu_1+3*sigma_1, 100)
plt.plot(x_1,mlab.normpdf(x_1, mu_1, sigma_1),"r--", label="posterior")
plt.title("B= "+ str(B)+ ", R= "+ str(R) + "\n"+" number of steps= " + str(n))
plt.legend()
plt.grid()
plt.show()
In [101]:
plt.plot(range(0,n), m, "r--", label= "posterior est.")
plt.plot(range(0,n), z, "b--", label= "model (truth)")
plt.plot(range(0,n), y, "g--", label="Observations")
plt.grid()
plt.legend()
plt.show()
Lorenz equations
Ensemble Kalman Filter \begin{equation} z^i_{n+1}=\hat{z}^i_{n+1}-K_{n+1}(H\hat{z}^i_{n+1}-\tilde{y}^i_{n+1}) \end{equation}
\begin{align} m_{n}&\approx\frac{1}{M}\sum^M_{i=1}z^i_{n}\\ C_{n}&\approx\frac{1}{M}\sum^M_{i=1}(z^i_{n}-m_{n})(z^i_{n}-m_{n})^{\top} \end{align}Exercise: Please implement the Ensemble Kalman filter for the Lorenz equation
In [ ]:
mat_contents = sio.loadmat('octave_a.mat')
In [ ]:
Particle filter
Exercise: Please implement the Particle filter with resampling for the Lorenz equation
In [ ]: