Linear Model
with $\xi_{n-1}\sim N(0,B)$ and $z_{0}\sim N(0,0.4)$
Observations \begin{equation} y_n=z_n+\eta_n \end{equation} $\eta_{n-1}\sim N(0,R)$
Kalman filter
Forecast formulas: \begin{align} \hat{m}_{n+1}&=Am_n\\ \hat{C}_{n+1}&=AC_nA^{\top}+B \end{align}
Analysis formulas \begin{align} m_{n+1}&=\hat{m}_{n+1}-K_{n+1}(H\hat{m}_{n+1}-y_{n+1})\\ C_{n+1}&=\hat{C}_{n+1}-K_{n+1}H\hat{C}_{n+1} \end{align}
with Kalman gain \begin{equation} K_{n+1}=\hat{C}_{n+1}H^{\top}(R+H\hat{C}_{n+1}H^{\top})^{-1} \end{equation}
Exercise: Please implement the Kalman filter for the example above
In [ ]:
In [ ]:
In [ ]:
Lorenz equations
Ensemble Kalman Filter \begin{equation} z^i_{n+1}=\hat{z}^i_{n+1}-K_{n+1}(H\hat{z}^i_{n+1}-\tilde{y}^i_{n+1}) \end{equation}
\begin{align} m_{n}&\approx\frac{1}{M}\sum^M_{i=1}z^i_{n}\\ C_{n}&\approx\frac{1}{M}\sum^M_{i=1}(z^i_{n}-m_{n})(z^i_{n}-m_{n})^{\top} \end{align}Exercise: Please implement the Ensemble Kalman filter for the Lorenz equation
In [ ]:
In [ ]:
Particle filter
Exercise: Please implement the Particle filter with resampling for the Lorenz equation
In [ ]: